समय : 3:00 घंटे # 2018 (I) गणित विज्ञान प्रश्न पत्र 4 C : 200 अक पूर्णाक #### अनुदेश - 1. आपने हिन्दी को माध्यम चुना है । इस परीक्षा पुरितका में एक सौ बीस (20 भाग 'A' में , 40 भाग 'B', 60 भाग 'C' में) बहुल विकल्प प्रश्न (MCQ) दिए गए हैं । आपको भाग 'A' में से अधिकतम 15 और भाग 'B' में 25 प्रश्नों तथा भाग 'C' में से 20 प्रश्नों के उत्तर देने हैं । यदि निर्धारित से अधिक प्रश्नों के उत्तर दिए गए तब केवल पहले भाग 'A' से 15, भाग 'B' से 25 तथा माग 'C' से 20 उत्तरों की जांच की जाएगी। - 2. उत्तर पत्र अलग से दिया गया है । अपना शैल नम्बर और केन्द्र का नाम लिखने से पहले यह जांब लीजिए कि पुस्तिका में पृष्ठ पूरे और सही हैं तथा कहीं से कटे-फटे नहीं हैं । यदि ऐसा है तो अप इन्द्रिजीलेटर से छशी खोंड की पुस्तिका बदलने का निवेदन कर सकते हैं । इसी तरह से उत्तर पत्र को भी जांब लें । इस पुस्तिका में रफ काम करने के लिए अतिरिक्त पन्ने संलग्न हैं । - राज्य पत्रक के पृथ्व 1 में दिए गए स्थान पर अपना रोल नम्बर, नाम तथा इस परीक्षा पुस्तिका का क्रमांक लिखिए, साथ ही अपना हस्ताक्षर भी अवश्य करें । - 4. आप अपनी ओ.एम.आर. उत्तर पत्रक में रोल नंबर, विषय कोड, पुस्तिका कोड और केन्द्र कोड से संबंधित समुचित वृतों को काले वॉल पेन से अवश्य काला करें। यह एक मात्र परीक्षाओं की जिम्मेदारी है कि वह उत्तर पुस्तिका में दिए गए निर्देशों का पूरी सावधानी से पालन करें. ऐसा न करने पर कम्प्यूटर विवरणों का सही तरीके से अकूटित नहीं कर पाएगा, जिससे अंततः आपको हानि, जिससे आपकी उत्तर पुस्तिका की अस्वीकृति भी शामिल, हो सकती हैं। - 5. भाग 'A' में प्रत्येक प्रश्न 2 खंक, भाग 'B' में प्रत्येक प्रश्न के 3 खंक तथा माग 'C' में प्रत्येक प्रश्न 4.75 खंक का है । प्रत्येक गलत उत्तर का ऋणात्मक मूल्यांकन माग 'A' में @ 0.5 खंक तथा भाग 'B' में @ 0.75 अंक से किया जाएगा । भाग 'C' के उत्तरों के लिए ऋणात्मक मूल्यांकन नहीं है । - 6. भाग 'A' तथा माग 'B' के प्रत्येक प्रश्न के नीचे चार विकल्प दिए मए हैं । इनमें से केवल एक विकल्प ही 'सही' अथवा 'सर्वोत्तम हल' हैं । आपको प्रत्येक प्रश्न का सही अथवा सर्वोत्तम हल बूंढना है A माग 'C' में प्रत्येक प्रश्न का 'एक " या एक से अधिक विकल्प सही हो सकते हैं । भाग 'C' में प्रत्येक प्रश्न के सभी विकल्पों का सही स्थन करने पर ही क्रेडिट प्राप्त होगा । - नकल करते हुए या अनुधित तरीकों का प्रयोग करते हुए पाए जाने वाले अन्याध्यियों का इस और अन्य भावी परीक्षाओं के लिए अयोग्य ठहराया जा सकता है । - अभ्यार्थी को उत्तर या रफ पन्नों के अतिरिक्त कहीं और कुछ भी नहीं लिखना चाहिए । - 9. केलकूलेटर का उपयोग करने की अनुमति नहीं है 19 - परीक्षा समाप्ति पर छिद्र बिन्दु चिन्हित स्थान से OMR उत्तर पत्रक को विमाणित करें। इन्विजीलेटर को मृत OMR उत्तर पत्रक सीपने के परधात आप इसकी कॉर्बनलैस प्रतिलिपि ले जा सकते हैं। - 11. हिन्दी माध्यम/संस्करण के प्रश्न में विसंगति होने/पार्थ जाने पर अंग्रेजी संस्करण प्रमाणिक - 12. कंवल परीक्षा की पूरी अवधि तक बैठने वाले प्रत्याशी को ही परीक्षा पुरितका साथ ले जाने की अनुमधि दी जाएगी । | रोल | नंबर | 1 | |-----|------|------| | नाम | | www. | अभ्यर्थी द्वारा भरी गई जानकारी को मैं सत्यापित करता हूँ । इन्विजीलेटर के हस्ताक्षर S/11 RISE/18-4CH-1A 4-C-H ## भाग\PART A बिन्दुओं (2017, 2017), (2027, 2027) और (2037, 2017) से बने त्रिमुज का क्षेत्रफल है 1. 2017 2. 100 3. 100√10 4. 100√20 The area of the triangle formed by joining the points (2017, 2017), (2027, 2027) and (2037, 2017) is 1. 2017 2. 100 3. 100√10 4. 100√20 L लम्बाई की एक छड़ी को याद्धिक रूप से दो भागों में तोड़ा गया है। छोटे दुकड़े की औसत लम्बाई क्या है? 1. L/6 2. L/4 3. L/3 . 4. L/2 2. A stick of length L is broken into two pieces at random. What is the average length of the smaller piece? 1. L/6 2. L/4 3. L/3 4. L/2 एक अनुसंघान पत्र का अवलोकन और उसके उद्दरण की गणना चित्र में दशार्थी गयी है। उद्दत प्रतिशत बढ़त किस मास में अवलोकन प्रतिशत बढ़त की दो गुनी ज्यादा है? 1. फरवरी 2. अप्रैल 3. मई 4. जून 3. Number of times a research paper is viewed and cited is shown in the plot. In which month was the percentage increase in citation more than the double of the percentage increase in view? 1. February 2. April 3. May 4. June 4. चार पुरूष M₁, M₂, M₃, M₄ और चार महिलाएँ F₁, F₂, F₃, F₄ एक गोलाकार मेज के किनारे एक—दूसरें से उल्टी तरफ चेहरा किये हुए बैठे हैं, जैसे कि नीचे के चित्र में दर्शाया गया है। यदि प्रत्येक अपने से तीन कदम दक्षिण चलता है और फिर एक कदम वामावर्त चलता है, तब F₄ का चेहरा किस दिशा में है? 1. पूर्व 2. उत्तर-पूर्व 3. उत्तर-पश्चिम 4. उत्तर Four males M₁, M₂, M₃, M₄ and four females F₁, F₂, F₃ and F₄ are sitting around a round table facing away from the table, as shown in the figure If each one moves three positions to his/her right and then one position to the left, then in which direction does F4 face? - East - 2. North-East - North-West - 4. North - 5. चित्र में, कुल छायांकित क्षेत्रफल (वर्तुल तथा अर्घवर्त्त) तथा कुल क्षेत्रफल (वर्ग एवं आयत) का अनुपात क्या है? 5. In the diagram, what is the ratio of the total shaded area (of the circle and semicircle) to the total area of the square and the rectangle? - 6. रिक्त स्थान में कौन सा विकल्प सबसे सटीक है? 0.1, 0.25, 0.3, 0.2, 0.5, 0.6, 0.3, ____, 0.9, 0.4, 1.0, 1.2 1. 1.05 2. 0.85 - 3. 0.75 - 4. 0.65 6. Which of the following options is the best choice for the missing number? 0.1, 0.25, 0.3, 0.2, 0.5, 0.6, 0.3, 0.9, 0.4, 1.0, 1.2 - 1. 1.05 - 2. 0.85 - 3. 0.75 - 4. 0.65 - किसी कक्षा में चौदह विद्यार्थी लड़कियां हैं। उस कक्षा में आठ विद्यार्थी नीला कमीज़ पहनते हैं। दो ऐसे हैं जो न तो लड़िकयां हैं, न नीला कमीज़ पहनते हैं। नीला कमीज़ पहनने वाले विद्यार्थियों में पांच लड़कियां हैं। कक्षा में कुल कितने विद्यार्थी हैं? - 1. 19 - 2. 29 - 3. 17 - 24 - 7. Fourteen of the students in a class are girls. Eight students in the class wear blue shirts. Two are neither girls nor wear blue shirts. Five students who wear blue shirts are girls. How many students are there in the class? - 1. 19 - 2. 29 - 3. 17 - 4. 24 - प्रो. मूर्ति अपने विद्यार्थियों को अपना साथी चुनने की अनुमति देती हैं। लेकिन विद्यार्थियों का कोई भी जोड़ा एक साथ लगातार सात कक्षाओं से ज्यादा में काम नहीं कर सकता है। एलिस और बॉब ने सात कक्षाओं में एक साथ काम किया। केल्विन और हेनी ने तीन कक्षाओं में लगातार एक साथ काम किया। केल्विन, एलिस के साथ काम नहीं करना चाहता है। किसको बॉब के साथ काम करने के लिए नियुक्त करना चाहिए? - 1. केल्विन - 2. एलिस - 3. डेनी - 4. कोई नहीं - Prof. Murthy likes to let her students choose who their partners will be; however, no pair of students may work together for more than seven class periods in a row. Alice and Bob have worked together for seven class periods in a row. Calvin and Denny have worked together for three class periods in a row. Calvin does not want to work with Alice. Who should be assigned to work with Bob? - 1. Calvin - 2. Alice - 3. Denny - 4. None - 9. दीर्घवृत्त में तीन अर्घवृत्तों को दर्शाया गया है। यदि दो छोटे अर्धवृत्तों की त्रिज्या दीर्घवृत्त की त्रिज्या की एक-चौथाई है और बड़े अर्घवृत्त की त्रिज्या छोटे अर्घवृत्त की त्रिज्या की दो गुनी है तो दीर्घवृत्त का कितना अंश छायांकित है? - 9. Three semi-circles are drawn inside a big circle as shown in the figure. If the radius of the two identical smaller semi-circles is $\frac{1}{4}$ th of that of the big circle and the radius of the bigger semi-circle is twice that of the small semi-circle, what proportion of the big circle's area is shaded? - 10. एक गेंद को 100मी. से गिराया जाता है। प्रत्येक उछाल के बाद गेंद अपनी पूर्व उछाल की आधी ऊँचाई तक उछलती है (अर्थात पहली उछाल के बाद गेंद 50मी. उछलती है, दूसरी उछाल के बाद 25मी, उछलती है, इत्यादि)। पहली और पाँचवी उछाल के बीच में मेंद द्वारा तय की गयी अध्वं दूरी क्या है? - 1. 355 刊。 - 3. 375 和。 4. 385 和。 - 10. A ball is dropped from a height of 100 m. The ball after each bounce rises vertically by half its previous height (This means at the first bounce it rises by 50 m, by 25 m at the second bounce and so on). What is the vertical distance travelled by the ball between the first and the fifth bounces? - 1. $\frac{355}{2}$ m - 3. 375 m - 11. संख्या 54 को आधार-10 छोड़कर किसी और आधार से व्यक्त किया गया है। इस संख्या पद्धति का आधार क्या है, यदि इसका तुल्नात्मक मान दशमलव पद्धति में 49 8? - 1. 1 - 3. 6 - 11. Consider a number 54 expressed in a base different from ten. What is the base of this number system if its equivalent value in the decimal system is 49? - 1. 1 - 3. 6 - 12. एक ईंधन केन्द्र एक दिन में 150 लोगों को ₹15000 का डीजल बेचता है। यदि प्रत्येक व्यक्ति को कम से कम ₹50 का डीजल खरीदना अनिवार्य है, तो किसी व्यक्ति ने अधितम उस दिन कितने रूपये का डीजल खरीदा? 1. 7450 2. 7500 3. 7550 4. 7600 12. A fuel station sold diesel costing ₹15000 to 150 persons on a day. If the lower limit of sale to a person is ₹50, what is the maximum amount in rupees for which one person could have purchased diesel on that day? 1. 7450 2. 7500 3. 7550 4. 7600 रिक्त स्थान के लिये उपयुक्त विकल्प क्या है? 13. Which of the options is appropriate for the blank space? 14. यदि संगीता की पुत्री मेरी पुत्री की माँ है, तो मेरा संगीता से क्या रिश्ता है? 1. केवल पुत्र होना ही सम्भावना है। - 2. केवल दामाद होना ही सम्मावना है। - 3. केवल पुत्री होना ही सम्मावना है। 4. दागाद या पुत्री 14. If Sangeeta's daughter is my daughter's mother, then how am I related to Sangeeta? 1. Son is the only possibility - 2. Son-in-law is the only possibility - 3. Daughter is the only possibility - 4. Son-in-law or daughter - 15. 44 खिलाड़ियों के समूह में, 26 खिलाड़ी हॉकी, 24 खिलाड़ी फुटबॉल और 24 खिलाड़ी क्रिकेट खेलते हैं। उनमें से, 8 हॉकी और फुटबॉल दोनों, 12 फुटबॉल और क्रिकेट दोनों, और 5 तीनों खेल खेलते हैं। कितने खिलाड़ी हॉकी और क्रिकेट दोनों खेलते हैं? 1. 10 2. 15 3. कोई नहीं 4. 7 15. In a group of 44 players, 26 play hockey, 24 play football and 24 play cricket. Eight of them play both hockey and football, 12 play both football and cricket, and 5 play all the three games. How many play both hockey and cricket? 1. 10 2. 15 3. None 4. 7 16. दिया गया है, (a)* = $a i f \ a > 0$ = $0 i f \ a \le 0$ } कोई वास्तविक अंक a के लिए मानें कि दो वास्तविक अंक x और y के लिए (xy)* = (x)*(y)*, तब निम्न में कौन सा अनिवार्य रूप से सत्य है? - 1. x > 0 and y > 0 - 2. $\{x < 0 \text{ and } y < 0\} \text{ or } \{x > 0 \text{ and } y > 0\}$ - 3. $\{x \le 0 \text{ and } y \le 0\} \text{ or } \{x \ge 0 \text{ and } y \ge 0\}$ - 4. $\{x \ge 0\}$ or $\{y \ge 0\}$ or $\{x \ge 0 \text{ and } y \ge 0\}$ - 16. It is given that $(a)^* = a \text{ if } a > 0$ = 0
if $a \le 0$ for any real number aSuppose for two real numbers x and y, $(xy)^* = (x)^*(y)^*$. Then which of the following is necessarily true? - i. x > 0 and y > 0 - 2. $\{x < 0 \text{ and } y < 0\} \text{ or } \{x > 0 \text{ and } y > 0\}$ - 3. $\{x \le 0 \text{ and } y \le 0\} \text{ or } \{x \ge 0 \text{ and } y \ge 0\}$ - 4. $\{x \ge 0\}$ or $\{y \ge 0\}$ or $\{x \ge 0 \text{ and } y \ge 0\}$ - 17. एक लम्बी-दूरी के घावक को पूर्ण दूरी के माग के बाद जल-केन्द्र मिलता है। क्षाग दूरी और तय करने के बाद, उसे विकित्सा केन्द्र मिलता है। चिकित्सा केन्द्र के 4 कि.मी. के बाद उसे दूसरा घावक मिलता है। पूर्ण दूरी का आघा माग तय करने के बाद दूसरा घावक, पहले घावक की दौड़ समाप्ति से 4 कि.मी. पहले कक जाता है। कुल दूरी कितनी है? - 1. 21 कि.मी. - 2. 30 कि.मी. - 3. 42 कि.मी. - 4. 50 कि.मी. - 17. A long-distance runner finds a water station after completing $\frac{1}{7}th$ of the total distance. After covering another $\frac{1}{6}th$ of the total distance he gets medical-aid. Another runner joins him 4 km after the medical-aid station. The second runner stops 4 km before the completion of run, covering $\frac{1}{2}$ of the total distance. What is the total distance? - 1. 21 km - 2. 30 km - 3. 42 km - 4. 50 km - 18. A और B एक साथ एक स्थान O से दक्षिणावर्त दिशा में वृत्ताकृति चलना प्रारम्म करते हैं। A को एक चक्कर लगाने में 9 मिनट लगते हैं और वह एक मिनट रूक कर दोबारा चलना प्रारम्भ करता है। B को एक चक्कर लगाने में 13 मिनट लगते हैं और वह 2 मिनट रूक कर दोबारा चलना प्रारम्भ करता है। चलना प्रारम्भ करता है। चलना शुरू करने के कितन मिनट बाद वे दोनों पुनः O पर मिलेगें? - 1. 30 - 2. 29 - 3. 31 - 4. 28 - 18. A and B move clockwise around a circle, starting from a common point O. A takes 9 minutes to complete a round but re-starts after a delay of 1 minute. B takes 13 minutes to complete the round but restarts after a delay of 2 minutes. How many minutes after they began would they meet again at O? - 1. 30 - 2. 29 - 3. 31 - 4. 28 - 19. दो विद्यार्थी एक प्रश्न को स्वतंत्रतः हल कर रहे हैं। यदि पहले की प्रश्न हल करने की प्रायिकता 3 है और दूसरे की 4 है, तो कम से कम एक विद्यार्थी के प्रश्न हल करने की प्रायिकता क्या है? - 1. 17 - 2. 19 - 3. 21/25 - 4. $\frac{23}{25}$ - 19. Two students are solving the same problem independently. If the probability that the first one solves the problem is $\frac{3}{5}$ and the probability that the second solves the problem is $\frac{4}{5}$, what is the probability that at least one of them solves the problem? - 1. 17/25 - 2. 1 - 3. $\frac{21}{25}$ - 4. $\frac{23}{25}$ 8 20. एक कार की गति समय के साथ नीचे दर्शायी गयी है। कार की औसत चाल क्या है? 1. 30.42 2. 20.43 3. 10.43 21.43 20. Movement of a car with respect to time is given below: The average speed of the car is 1. 30.42 2. 20.43 3. 10.43 4. 21.43 ## HIJ PART B UNIT-I 21. यदि a, b, c, d ऐसी वास्तविक अचर राशियाँ (real constants) हों कि प्रत्येक $x,y \in \mathbb{R}$ के लिए $\lambda x^2 + 2xy + y^2 = (ax + by)^2 + (cx + dy)^2$ सत्य हो. तो - 1. $\lambda = -5$ - 2. \lambda ≥ 1 - 3. 0 < \lambda < 1 - ऐसा कोई λ ∈ ℝ संगव नहीं है। - 21. Given that there are real constants a, b, c, d such that the identity $\lambda x^2 + 2xy + y^2 = (ax + by)^2 + (cx + dy)^2$ holds for all $x, y \in \mathbb{R}$. This implies - 1. $\lambda = -5$ - 2. A≥1 - 3. 0 < \lambda < 1 - 4. there is no such $\lambda \in \mathbb{R}$ - 22. स्तम्भ सदिशों का समुख्यय $\{v_1, v_2, \cdots, v_n\}$ सदिशों के अदिश गुणन के सापेक्ष Rⁿ; n ≥ 2 हेतु मात्रक सदिशों का पारस्परिक लंबवत आधार (orthonormal basis) है। यदि $A_{n \times n}$ आव्यूह हो जो स्तम्भ सदिश v1, v2, ... , vn से बना हो 1. $A = A^{-1}$ $2. \quad A = A^T$ 3. $A^{-1} = A^T$ 4. Det(A) = 1 22. Let \mathbb{R}^n , $n \ge 2$, be equipped with standard inner product. Let $\{v_1, v_2, \dots, v_n\}$ be n column vectors forming an orthonormal basis of \mathbb{R}^n . Let A be the $n \times n$ matrix formed by the column vectors $v_1, ... v_n$. Then 1. $A = A^{-1}$ $2. \quad A = A^T$ 3. $A^{-1} = A^T$ 4. Det(A) = 1 - 23. यदि $\{a_n\}$ य $\{b_n\}$ वास्तविक संख्याओं (real numbers) के ऐसे एकदिष्ट अनुक्रम (monotone sequence) हों कि श्रेणी $\sum a_n b_n$ (convergent) बन जाए तो निम्नलिखित में से कौन सा कथन सत्य है ? - 1. $\sum a_n$ व $\sum b_n$ दोनों अमिसारी है। - 2. $\sum a_n$ व $\sum b_n$ में से कम से कम एक अमिसारी है। - {a_n} य {b_n} दोनों परिबद्ध (bounded) है। - {a_n} व {b_n} में से कम से कम एक परिबद्ध (bounded) #1 - 23. Given $\{a_n\}$, $\{b_n\}$ two monotone sequences of real numbers and that $\sum a_n b_n$ is convergent, which of the following is true? 1. $\sum a_n$ is convergent and $\sum b_n$ is convergent - 2. At least one of $\sum a_n$, $\sum b_n$ is convergent - 3. $\{a_n\}$ is bounded and $\{b_n\}$ is bounded - 4. At least one of {a_n}, {b_n} is bounded 4-C-H 24. परिमेय संख्याओं के समुख्यय को Q व धनात्मक पूर्णाकों के समुख्यय को N से निरूपित कीजिए। समुख्यय S निम्न प्रकार से परिभाषित है $$S = \{(x,y) \mid x^2 + y^2 = \frac{1}{n^2}, \text{ जबकि } n \in \mathbb{N}$$ तथा $x \in \mathbb{Q}$ या $y \in \mathbb{Q}\}$ - S एक परिमित अरिक्त (finite non empty) समुच्चय है। - ऽ गणनीय (countable) है। - S अगणनीय (uncountable) है। - 4. S रिक्त (empty) है। - 24. Let $S = \{(x, y) \mid x^2 + y^2 = \frac{1}{n^2}, \text{ where } n \in \mathbb{N} \text{ and either } x \in \mathbb{Q} \text{ or } y \in \mathbb{Q} \}.$ Here Q is the set of rational numbers and N is the set of positive integers. Which of the following is true? - 1. S is a finite non empty set - 2. S is countable - 3. S is uncountable - 4. S is empty - 25. अनुक्रम $\{a_n\}$ निम्न प्रकार से परिभाषित किया गया है $a_1 = 1$; $$a_{n+1} = (-1)^n \left(\frac{1}{2}\right) \left(|a_n| + \frac{2}{|a_n|}\right)$$ जब $n \ge 1$ निम्नलिखित में से कौन सा कथन सत्य है ? - 1. $\limsup a_n = \sqrt{2}$ - 2. $\lim \inf a_n = -\infty$ - 3. $\lim a_n = \sqrt{2}$ - 4. $\sup a_n = \sqrt{2}$ - 25. Define the sequence $\{a_n\}$ as follows: $$a_1 = 1$$ and for $$n \ge 1$$, $a_{n+1} = (-1)^n \left(\frac{1}{2}\right) \left(|a_n| + \frac{2}{|a_n|}\right)$. Which of the following is true? - 1. $\limsup a_n = \sqrt{2}$ - 2. $\lim \inf a_n = -\infty$ - 3. $\lim a_n = \sqrt{2}$ - 4. $\sup a_n = \sqrt{2}$ - 26. यदि $\{x_n\}$ वास्तविक संख्याओं (real numbers) का एक अभिसारी अनुक्रम (convergent sequence) व $\{y_n\}$ वास्तविक संख्याओं का एक परिबद्ध अनुक्रम (bounded sequence) हो तो निम्नलिखित में से कौन सा निष्कर्ष निकलता है ? - {x_n + y_n} अभिसारी है। - 2. $\{x_n + y_n\}$ परिबद्ध है। - 3. $\{x_n + y_n\}$ का कोई भी अभिसारी उपअनुक्रम (convergent subsequence) नहीं है। - 4. $\{x_n + y_n\}$ का कोई भी परिबद्ध उपअनुक्रम (bounded subsequence) नहीं है। - 26. If $\{x_n\}$ is a convergent sequence in \mathbb{R} and $\{y_n\}$ is a bounded sequence in \mathbb{R} , then we can conclude that - 1. $\{x_n + y_n\}$ is convergent - 2. $\{x_n + y_n\}$ is bounded - 3. $\{x_n + y_n\}$ has no convergent subsequence - 4. $\{x_n + y_n\}$ has no bounded subsequence - 27. संख्या $\log(2) \sum_{n=1}^{100} \frac{1}{2^{n} \cdot n}$ ह - 1. शून्य से कम। - 2. 1 से अधिक। - 3. 1 2¹⁰⁰:101 से कम। - 4. 1 2100-101 से अधिक। - 27. The difference $$\log(2) - \sum_{n=1}^{100} \frac{1}{2^n \cdot n}$$ is - 1. less than 0 - 2. greater than 1 - 3. less than $\frac{1}{2^{100.101}}$ - 4. greater than $\frac{1}{2^{100} \cdot 101}$ - 28. यदि $$f(x,y) = \log(\cos^2(e^{x^2})) + \sin(x+y)$$ ਵੀ ਕੀ $\frac{\partial}{\partial y} \frac{\partial}{\partial x} f(x,y)$ ਵੀ ਸ਼ੀ - 1. $\frac{\cos(e^{x^2})^{-1}}{1+\sin^2(e^{x^2})} \cos(x+y)$ - 2 0 - 3. $-\sin(x+y)$ - 4. cos(x+y) 4-C-H S/11 RISE/18-4CH-2A 10 28. Let $$f(x, y) = \log(\cos^2(e^{x^2})) + \sin(x + y)$$. Then $$\frac{\partial}{\partial y} \frac{\partial}{\partial x} f(x, y)$$ is 1. $$\frac{\cos(e^{x^2})^{-1}}{1+\sin^2(e^{x^2})} - \cos(x+y)$$ - 2. 0 - 3. $-\sin(x+y)$ - 4. cos(x+y) - 29. यदि A बास्तविक संख्याओं (real numbers) का $m \times n$ आव्यूह (matrix) हो तथा B वास्तविक संख्याओं का $(n \times m)$ आव्यृह हो; जबकि m < nहै, तो - 1. AB सदैव व्युतक्रमणीय (nonsingular) होगा। - 2. AB सदैव अव्युत्क्रमणीय (singular) होगा। - 3. BA सदैव व्युक्तमणीय होगा। - 4. BA सदैव अव्युत्क्रमणीय होगा। - 29. Let A be a $(m \times n)$ matrix and B be a $(n \times m)$ matrix over real numbers with m < n. Then - 1. AB is always nonsingular - 2. AB is always singular - 3. BA is always nonsingular - 4. BA is always singular - 30. यदि A वास्तविक संख्याओं (real numbers) का ऐसा (2×2) आव्युह हो जिसके लिए Det(A + I) =1 + Det(A) सत्य हो, तो निम्नलिखित में से क्या निष्कर्ष निकलता है ? - 1. Det(A) = 0 - 2. A = 0 - 3. Tr(A) = 0 - 4. A व्युत्क्रमणीय (nonsingular) है। - 30. If A is a (2×2) matrix over \mathbb{R} with Det(A+I) = 1 + Det(A),then we can conclude that - 1. Det(A) = 0 - 2. A = 0 - 3. Tr(A) = 0 - 4. A is nonsingular - 31. समीकरणों के निकाय $$1 \cdot x + 2 \cdot x^{2} + 3 \cdot xy + 0 \cdot y = 6$$ $$2 \cdot x + 1 \cdot x^{2} + 3 \cdot xy + 1 \cdot y = 5$$ $$2 \cdot x + 1 \cdot x^2 + 3 \cdot xy + 1 \cdot y = 1$$ $$1 \cdot x - 1 \cdot x^2 + 0 \cdot xy + 1 \cdot y = 7$$ के बारे में क्या सत्य है ? - 1. इसके हल परिमेय संख्याओं (rational numbers) में हैं। - 2. इसके हल वास्तविक संख्याओं (real numbers) में हैं। - 3. इसके हल सम्मिश्र संख्याओं (complex numbers) में हैं। - 4. इसका कोई हल नहीं है। - 31. The system of equations: $$1 \cdot x + 2 \cdot x^2 + 3 \cdot xy + 0 \cdot y = 6$$ $$2 \cdot x + 1 \cdot x^2 + 3 \cdot xy + 1 \cdot y = 5$$ $$1 \cdot x - 1 \cdot x^2 + 0 \cdot xy + 1 \cdot y = 7$$ - 1. has solutions in rational numbers - 2. has solutions in real numbers - 3. has solutions in complex numbers - 4. has no solution **32.** आव्यूह $$\begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}^{20}$$ की trace है - 1. 720 - $2. \quad 2^{20} + 3^{20}$ - 3. $2 \cdot 2^{20} + 3^{20}$ - 4. $2^{20} + 3^{20} + 1$ - 32. The trace of the matrix $$\begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}^{20}$$ - 1. 720 - $2. \quad 2^{20} + 3^{20}$ - 3. $2 \cdot 2^{20} + 3^{20}$ - 4. $2^{20} + 3^{20} + 1$ #### UNIT-2 - 33. यदि $f(x) = x^5 5x + 2$ हो तो - f का कोई भी वास्तविक मूल (real root) - 2. f का केवल एक वास्तविक मूल है। - 3. f के कुल तीन वास्तविक मूल
है। - f के सभी मूल वास्तविक मूल है। - 33. Let $f(x) = x^5 5x + 2$. Then - 1. f has no real root - 2. f has exactly one real root 4-C-H - 3. f has exactly three real roots - 4. all roots of f are real - 34. यदि अपरिमेय संख्याओं के समुख्य को \mathbb{Q} से निरूपित किया जाए व $S = \{(\alpha, \beta) | \alpha, \beta \in \mathbb{Q}\} \subset \mathbb{R}^2$ हो rks - 1. ℝ² में S सुबंधित (connected) है। - R² में S^C सुबंधित है। - R² में S संवृत (closed) है। - R² में S^C संवृत (closed) है। - 34. Consider the space $S = \{(\alpha, \beta) | \alpha, \beta \in \mathbb{Q}\} \subset \mathbb{R}^2$, where \mathbb{Q} is the set of rational numbers. Then - 1. S is connected in R2 - 2. S^C is connected in \mathbb{R}^2 - 3. S is closed in R2 - 4. S[€] is closed in R² - 35. यदि C पर परिभाषित एक वैश्लेषिक (analytic) फलन f अचर नहीं है तो निम्नलिखित में से कौन सा कथन असत्य है ? - f अपरिबद्ध (unbounded) है। - f विवृत समुच्चयों (open sets) को विवृत समुच्चयों पर प्रतिचित्रित (map) करता है। - एक विवृत सुर्वधित प्रांत (open connected domain) U विद्यमान है जिस पर f सदैव अशून्य है तथा |f|U| U के किसी बिन्दु पर अपना लघुत्तम मान अर्जित करता है। - 4. C में f का प्रतिबिम्ब सघन (dense)है। - 35. Suppose that f is a non-constant analytic function defined over €. Then which one of the following is false? - 1. f is unbounded - 2. f sends open sets into open sets - 3. There exists an open connected domain U on which f is never zero but $|f|_U$ attains its minimum at some point of U - 4. The image of f is dense in C - 36. समाकल $$\oint \frac{e^z}{z^2 - 1} dz$$ on the graph of 1. (- 2. (- 3. $(\pi i)e (\pi i)e^{-1}$ - 4 (0+0-1 - 36. The value of the integral $$\oint_{|1-z|=1} \frac{e^z}{z^2-1} dz \text{ is}$$ 1. 0 - 2. (πi)e - 3. $(\pi i)e (\pi i)e^{-1}$ - 4. $(e + e^{-1})$ - 37. यदि $f:\{z \mid |z| < 1\} \to \mathbb{C}$ एक वैश्लेषिक (analytic) फलन है जो कि अचर नहीं है तो निम्नलिखित में से संभावित रूप से कौन से प्रतिबंध का f द्वारा पालन किया जा सकता है ? - 1. $f\left(\frac{1}{n}\right) = f\left(\frac{-1}{n}\right) = \frac{1}{n^2} \ \forall \ n \in \mathbb{N}$ - 2. $f\left(\frac{1}{n}\right) = f\left(\frac{-1}{n}\right) = \frac{1}{2n+1} \ \forall \ n \in \mathbb{N}$ - $3. \left| f\left(\frac{1}{n}\right) \right| < 2^{-n} \ \forall \ n \in \mathbb{N}$ - $4. \ \frac{1}{\sqrt{n}} < \left| f\left(\frac{1}{n}\right) \right| < \frac{2}{\sqrt{n}} \ \forall \ n \in \mathbb{N}$ - 37. Let f: {z | |z| < 1} → C be a non-constant analytic function. Which of the following conditions can possibly be satisfied by f?</p> - 1. $f\left(\frac{1}{n}\right) = f\left(\frac{-1}{n}\right) = \frac{1}{n^2} \ \forall \ n \in \mathbb{N}$ - 2. $f\left(\frac{1}{n}\right) = f\left(\frac{-1}{n}\right) = \frac{1}{2n+1} \ \forall \ n \in \mathbb{N}$ - 3. $\left| f\left(\frac{1}{n}\right) \right| < 2^{-n} \forall n \in \mathbb{N}$ - 4. $\frac{1}{\sqrt{n}} < \left| f\left(\frac{1}{n}\right) \right| < \frac{2}{\sqrt{n}} \forall n \in \mathbb{N}$ - 38. एक फलन $\varphi: \mathbb{C}\setminus\{1\} \to \mathbb{C}$ को $\varphi(z)=\frac{1+z}{1-z}$ द्वारा परिभाषित किया जाता है। निम्नलिखित में से कौन सा कथन सत्य है। - 1. $\varphi(\lbrace z \in \mathbb{C} \mid |z| < 1\rbrace) \subseteq \lbrace z \in \mathbb{C} \mid |z| < 1\rbrace$ - 2. $\varphi(\lbrace z \in \mathbb{C} \mid Re(z) < 0 \rbrace) \subseteq \lbrace z \in \mathbb{C} \mid Re(z) < 0 \rbrace$ - φ आच्छादक (onto) है। - φ(ℂ\{1}) = ℂ\{-1} - 38. Consider the map $\varphi : \mathbb{C} \setminus \{1\} \to \mathbb{C}$ given by $\varphi(z) = \frac{1+z}{1-z}$. Which of the following is true? - 1. $\varphi(\lbrace z \in \mathbb{C} \mid |z| < 1\rbrace) \subseteq \lbrace z \in \mathbb{C} \mid |z| < 1\rbrace$ - 2. $\varphi(\{z \in \mathbb{C} \mid Re(z) < 0\}) \subseteq \{z \in \mathbb{C} \mid Re(z) < 0\}$ - 3. φ is onto - 4. $\varphi(\mathbb{C}\setminus\{1\}) = \mathbb{C}\setminus\{-1\}$ 4-C-H 12 39. यदि S₇ समुख्य {1,2,3,4,5,6,7} के क्रमचयों (permutations) के समृह (group) को निर्दिष्ट करता हो तो निम्नलिखित में से कौन सा कथन सत्य है? S₇ में कोटि 6 (order 6) का कोई अवयव (element) नहीं है। 2. S₇ में कोटि 7 का कोई अवयव नहीं है। 3. S₇ में कोटि 8 का कोई अवयव नहीं है। 4. S7 में कोटि 10 का कोई अवयव नहीं है। 39. Let S_7 denote the group of permutations of the set $\{1, 2, 3, 4, 5, 6, 7\}$. Which of the following is true? 1. There are no elements of order 6 in S₇ 2. There are no elements of order 7 in S_7 3. There are no elements of order 8 in S_7 4. There are no elements of order 10 in S₂ 40. समूह (group) \mathbb{Z}_{10} से \mathbb{Z}_{20} में कुल कितर्न समरूपिताएं (homomorphisms) हैं ? 1. शून्य 2. एक 3. पाँच 4. **दस** 40. The number of group homomorphisms from \mathbb{Z}_{10} to \mathbb{Z}_{20} is 1. zero 2. one 3. five 4. ten ### UNIT 3 41. समाकल समीकरण $\Phi(x) = x^2 + \int_0^x e^{t-x} \varphi(t) dt$ का रेज़िल्वेन्ट कर्नल (resolvent kernel) है e^{t-x} e^{x-t} 2. 4. $x^2 + e^{x-t}$ 41. The resolvent kernel for the integral equation $\Phi(x) = x^2 + \int_0^x e^{t-x} \varphi(t) dt \text{ is}$ 1. et-x 2 3. ex-t 4. $x^2 + e^{x-}$ 42. एक सरल लोलक (simple pendulum) की गति का लाग्राजियन (Lagrangian) $L=\frac{1}{2}m\,l^2\dot{\theta}^2+mgl\cos\theta$ दिया गया है, जबिक l लंबाई की डोर से लटके गोलक (bob) का दव्यमान m, गुरूत्वाकर्षण त्वरण g, व मध्य स्थिति से लोलक का आयाम θ हो तब L से संबद्ध हैमिल्टॉनियम (Hamiltonian) होगा 1. $$H(p,\theta) = \frac{p^2}{2ml^2} + mgl\cos\theta$$ 2. $$H(p,\theta) = \frac{p^2}{2ml^2} - mgl\cos\theta$$ 3. $$H(p,\theta) = \frac{p^2}{ml^2} - mgl\cos\theta$$ 4. $$H(p,\theta) = \frac{3p^2}{2mt^2} + mgl\cos\theta$$ 42. Given that the Lagrangian for the motion of a simple pendulum is $L = \frac{1}{2}m l^2 \dot{\theta}^2 + mgl\cos\theta,$ where m is the mass of the pendulum bob suspended by a string of length l,g is the acceleration due to gravity and θ is the amplitude of the pendulum from the mean position, then a Hamiltonian corresponding to L is 1. $$H(p,\theta) = \frac{p^2}{2mt^2} + mgt\cos\theta$$ 2. $$H(p,\theta) = \frac{p^2}{2ml^2} - mgl\cos\theta$$ 3. $$H(p,\theta) = \frac{p^2}{ml^2} - mgl\cos\theta$$ 4. $$H(p,\theta) = \frac{3p^2}{2mt^2} + mgt\cos\theta$$ 43. अवकल समीकरण y' = y(y-1)(y-2) के संबंध में कौन सा कथन सत्य है ? यदि y(0) = 0.5 हो तो y ससमान (decreasing) है। यदि y(0) = 1.2 हो तो y वृद्धिमान (increasing) है। यदि y(0) = 2.5 हो तो y अपरिबद्ध (unbounded) है। यदि y(0) < 0 हो तो y निम्नबद्ध (bounded below) है। 43. Consider the ordinary differential equation y' = y(y-1)(y-2). Which of the following statements is true? 1. If y(0) = 0.5 then y is decreasing 2. If y(0) = 1.2 then y is increasing 3. If y(0) = 2.5 then y is unbounded 4. If y(0) < 0 then y is bounded below 44. अवकल समीकरण y'' + P(x)y' + Q(x)y = 0 की कल्पना कीजिए. जबकि P और Q सर्वथावकलनीय फलन (smooth functions) है। यदि y_1 व y_2 इस अवकल समीकरण के हल हों तथा W(x) संबंधित ब्रोन्स्कियन (Wronskian) को निरूपित करता हो तो निम्नालिखित में से कौन सा कथन सर्वदा सत्य है ? - ।. यदि y_1 व y_2 रैखिकीय अखतंत्र (linearly dependent) हों तो ऐसे x_1 व x_2 संभव है जिनके लिए $W(x_1)=0$ तथा $W(x_2)\neq 0$ होता है। - यदि y₁ व y₂ रैखिकीय स्वतंत्र (linearly independent) हों तो प्रत्येक x के लिए W(x) = 0 होगा। - 3. यदि y_1 व y_2 रैखिकीय अस्वतंत्र हों तो प्रत्येक x के लिए $W(x) \neq 0$ होगा। - 4. यदि y_1 व y_2 रैखिकीय स्वतंत्र हाँ तो प्रत्येक x के लिए $W(x) \neq 0$ होगा। - 44. Consider the ordinary differential equation y" + P(x)y' + Q(x)y = 0 where P and Q are smooth functions. Let y₁ and y₂ be any two solutions of the ODE. Let W(x) be the corresponding Wronskian. Then which of the following is always true? - 1. If y_1 and y_2 are linearly dependent then $\exists x_1, x_2$ such that $W(x_1) = 0$ and $W(x_2) \neq 0$ - If y₁ and y₂ are linearly independent then W(x) = 0 ∀x - If y₁ and y₂ are linearly dependent then W(x) ≠ 0 ∀x - If y₁ and y₂ are linearly independent then W(x) ≠ 0 ∀x - 45. कॉशी प्रश्न (Cauchy problem) $2u_x + 3u_y = 5$ रेखा 3x - 2y = 0 पर u = 1 के संबंध में कौन सा कथन सत्य है ? - 1. इसका केवल एक हल है। - 2. इसके दो इल है। - 3. इसके अनन्त हल हैं। - 4. इसका कोई हल नहीं है। - 45. The Cauchy problem - has - 1. exactly one solution - 2. exactly two solutions - 3. infinitely many solutions - 4. no solution - $\begin{aligned} \mathbf{46} & \text{ aff } \frac{\partial^2 u}{\partial t^2} \frac{\partial^2 u}{\partial x^2} = 0, x \in \mathbb{R}, t > 0 ; \\ u(x,0) &= f(x), \ \frac{\partial u}{\partial t}(x,0) = 0, x \in \mathbb{R} \end{aligned}$ एकमात्र हल u हो, जबकि $f: \mathbb{R} \to \mathbb{R}$ निम्नलिखित प्रतिबंधों को संतुष्ट करता हो $f(x) = x(1-x) \ \forall \ x \in [0,1]$ और $f(x+1) = f(x) \ \forall \ x \in \mathbb{R}$ तो $u\left(\frac{1}{2}, \frac{5}{4}\right)$ का मान है 1. $\frac{1}{8}$ 3. $\frac{3}{16}$ 2. $\frac{1}{16}$ 46. Let u be the unique solution of $$\frac{\partial^{2} u}{\partial t^{2}} - \frac{\partial^{2} u}{\partial x^{2}} = 0, x \in \mathbb{R}, t > 0$$ $$u(x, 0) = f(x), \frac{\partial u}{\partial t}(x, 0) = 0, x \in \mathbb{R}$$ where $f: \mathbb{R} \to \mathbb{R}$ satisfies the relations $f(x) = x(1-x) \quad \forall x \in [0,1]$ and $f(x+1) = f(x) \quad \forall x \in \mathbb{R}$. Then $u\left(\frac{1}{2}, \frac{5}{4}\right)$ is 1. $\frac{1}{8}$ $2. \frac{1}{16}$ $3. \frac{3}{16}$ 4. 5 47. यदि $\int_0^h f(x)dx = h \left\{ af(0) + bf\left(\frac{h}{3}\right) + cf(h) \right\}$ कोई भी संभव उच्च कोटि के बहुपदों f के लिए सटीक (exact) हो तो a,b,c का मान है ? 1. a = 0, $b = \frac{3}{4}$, $c = \frac{1}{4}$ 2. $a = \frac{3}{4}$, $b = \frac{2}{4}$, $c = \frac{1}{4}$ 3. $a = \frac{-2}{4}$, $b = \frac{3}{4}$, $c = \frac{1}{4}$ 4. a = 0, $b = \frac{1}{4}$, $c = \frac{3}{4}$ 47. The values of a, b, c such that $$\int_{0}^{h} f(x)dx = h \left\{ af(0) + bf\left(\frac{h}{3}\right) + cf(h) \right\}$$ is exact for polynomials f of degree as high as possible are 1. a = 0, $b = \frac{3}{4}$, $c = \frac{1}{4}$ 2. $a = \frac{3}{4}$, $b = \frac{2}{4}$, $c = \frac{1}{4}$ 3. $a = \frac{-2}{4}$, $b = \frac{3}{4}$, $c = \frac{1}{4}$ 4. a = 0, $b = \frac{1}{4}$, $c = \frac{3}{4}$ 14 - 48. यदि $J[y] = \int_0^1 [(y')^2 + 2y] dx$ हो
जबकि y(0) = 0, y(1) = 1, फलन y के प्रतिबंध हों तो inf/[y] का मान - 1. 23 - 2. 21 青 - 3. 18 g - 4. अस्तित्व नहीं है। - 48. Consider $J[y] = \int_0^1 [(y')^2 + 2y] dx$ subject to y(0) = 0, y(1) = 1.Then $\inf J[y]$ - 1. is $\frac{23}{12}$ - 2. is $\frac{21}{24}$ - 3, is $\frac{18}{25}$ - 4. does not exist #### UNIT-4 - 49. एक लैटिन वर्ग डिजाइन में ब्रिट स्वातंत्र्य कोटि (error degrees of freedom) 30 है। तो किसी भी प्रशोधन (treatment) के लिए प्रशोधन स्वातंत्र्य कोटि (treatment degrees of freedom) होगी ? - 1.4 3. 6 - 49. In a Latin Square Design the "error degrees of freedom" is 30. The "treatment degrees of freedom" for any treatment is - 1.4 3. 6 - प्रतिबंध | 3x | + | 2y | ≤ 1 के अन्तर्गत - 9x + 4y का महत्तम मान है 1. 1 - 2. 2 3. 3 - 50. Suppose that $|3x| + |2y| \le 1$. the maximum value of 9x + 4y is - 1. 1 2. 2 3. 3 - 51. एक अनमिनत पासे (standard fair die) को तब तक उछाला जाता है जब तक कि वह पासा 5 व 6 के अलावा कोई दूसरा अंक नहीं दर्शाता। यदि X पासे की अंतिम उछाल में आए अंक को निरूपित करे व घटनाएं A व B निम्न प्रकार से परिभाषित हों $A = \{ X \ \text{एक सम संख्या है} \}$ $B = \{ X \text{ का } 2 \text{ मान } \text{ या } \text{ उससे } \text{ कम } \text{ है} \}$ तो - 1. $P(A \cap B) = 0$ - 2. $P(A \cap B) = 1/6$ - 3. $P(A \cap B) = 1/4$ - 4. $P(A \cap B) = 1/3$ - 51. A standard fair die is rolled until some face other than 5 or 6 turns up. Let X denote the face value of the last roll, and $A = \{X \text{ is even}\}\$ and $B = \{X \text{ is at most 2}\}.$ Then. - 1. $P(A \cap B) = 0$ - 2. $P(A \cap B) = 1/6$ - 3. $P(A \cap B) = 1/4$ - 4. $P(A \cap B) = 1/3$ - 52. यदि X व Y स्वरूपी स्वतंत्र बंटन (i.i.d.), जो कि अन्तराल (0, 1) पर समरूप (uniform on (0, 1)) है, हों तथा $Z = \max(X, Y), W = \min(X, Y)$ हो तो P((Z-W) > 1/2) का मान होगा - 1.1/2 - 2. 3/4 - 3.1/4 - 4. 2/3 - 52. Let X and Y be i.i.d. uniform (0, 1) random variables. Let $Z = \max(X, Y)$ and $W = \min(X, Y).$ Then P((Z - W) > 1/2) is - 1.1/2 - 3.1/4 - 2. 3/4 4. 2/3 - 53. एक मार्कोव श्रृंखला (Markov chain) की अवस्था समिष्ट (state space) S = {1, 2, 3, 4} व संक्रमण प्रायिकता आव्यूह (transition probability matrix) $P = (p_{i,j})$ निम्न प्रकार से परिभाषित है - र्ग र्वे र विकास स्थापन के क - $\lim_{n\to\infty}p_{2,2}^{(n)}=0, \quad \sum_{n\to\infty}p_{2,2}^{(n)}=\infty$ - $\lim_{n\to\infty} p_{2,2}^{(n)} = 0, \quad \sum_{n\to\infty} p_{2,2}^{(n)} < \infty$ - $\lim_{n\to\infty} p_{2,2}^{(n)} = 1, \quad \sum_{n=0}^{\infty} p_{2,2}^{(n)} = \infty$ 4. $$\lim_{n\to\infty} p_{2,2}^{(n)} = 1, \quad \sum_{n=0}^{\infty} p_{2,2}^{(n)} < \infty$$ 53. Consider a Markov chain having state space $S = \{1, 2, 3, 4\}$ with transition probability matrix $P = (p_{i,j})$ given by $$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 \begin{bmatrix} 1/2 & 0 & 1/2 & 0 \\ 2/4 & 1/4 & 1/4 & 1/4 \\ 3/4 & 1/2 & 0 & 1/3 & 1/3 \\ 4/2 & 0 & 1/2 & 0 \end{bmatrix}$$ Then 1. $$\lim_{n\to\infty} p_{2,2}^{(n)} = 0$$, $\sum_{n=0}^{\infty} p_{2,2}^{(n)} = \infty$ 2. $$\lim_{n\to\infty} p_{2,2}^{(n)} = 0$$, $\sum_{n=0}^{\infty} p_{2,2}^{(n)} < \infty$ 3. $$\lim_{n\to\infty} p_{2,2}^{(n)} = 1$$, $\sum_{n=0}^{\infty} p_{2,2}^{(n)} = \infty$ 4. $$\lim_{n\to\infty} p_{2,2}^{(n)} = 1$$, $\sum_{n=0}^{\infty} p_{2,2}^{(n)} < \infty$ 54. यदि X_1 , X_2 , X_3 स्वरूपी स्वतंत्र बंटन (i.i.d) मानक नॉर्मल यादृष्टिक चर (standard normal variables) हों तो निम्नलिखित में से क्या सत्य है ? 1. $$\frac{\sqrt{2}|X_1|}{\sqrt{X_2^2 + X_3^2}} \sim t_2$$ 2. $$\frac{x_1 - 2x_2 + x_3}{\sqrt{2} |x_1 + x_2 + x_3|} \sim t_1$$ 3. $$\frac{(x_1 - x_2)^2}{(x_1 + x_2)^2} \sim F_{2,2}$$ 4. $$\frac{3X_1^2}{X_1^2 + X_2^2 + X_3^2} \sim F_{1,3}$$ 54. Let X₁, X₂, X₃ be i.i.d. standard normal variables. Which of the following is true? $$1, \ \frac{\sqrt{2}|x_1|}{\sqrt{x_2^2 + x_3^2}} \sim t_2$$ 2. $$\frac{x_1 - 2x_2 + x_3}{\sqrt{2} |x_1 + x_2 + x_3|} \sim t_1$$ 3. $$\frac{(X_1-X_2)^2}{(X_1+X_2)^2} \sim F_{2,2}$$ $$4. \ \ \frac{3x_1^2}{x_1^2+x_2^2+x_3^2} \sim F_{1,3}$$ 55. मान लीजिए कि बिजली के एक बल्ब का जीवन काल θ माध्य के चरघातांकी बंटन (exponential distribution) का पालन करता है। प्राचल θ के आंकलन के लिए n बल्ब एक साथ चालू कर दिए जाते हैं। फिर t घण्टे बीतने पर देखा जाता है कि n-m(>0) बल्ब ही कार्य कर रहे हैं। यदि शेष m(>0) बल्बों का जीवनकाल $x_1, x_2, ..., x_m$ घण्टे हो तो θ का महत्तम संभाव्य आंकलन (maximum likelihood estimate) होगा ? 1. $$\hat{\theta} = \frac{t}{\log \frac{n}{n-m}}$$ $$2. \quad \hat{\theta} = \frac{\sum_{i=1}^{m} x_i}{m}$$ 3. $$\hat{\theta} = \frac{\sum_{i=1}^{m} x_i + (n-m)t}{n}$$ 4. $$\hat{\theta} = \frac{\sum_{i=1}^{m} x_i + (n-m)t}{m}$$ 55. Suppose that the lifetime of an electric bulb follows an exponential distribution with mean θ hours. In order to estimate θ, n bulbs are switched on at the same time. After t hours, n - m(> 0) bulbs are found to be in functioning state. If the lifetimes of the other m(> 0) bulbs are noted as x₁, x₂,..., x_m, respectively, then the maximum likelihood estimate of θ is given by 1. $$\hat{\theta} = \frac{t}{\log \frac{n}{n-m}}$$ $$2. \quad \widehat{\theta} = \frac{\sum_{i=1}^{m} x_i}{m}$$ 3. $$\hat{\theta} = \frac{\sum_{i=1}^{m} x_i + (n-m)t}{n}$$ 4. $$\widehat{\theta} = \frac{\sum_{i=1}^{m} x_i + (n-m)t}{m}$$ 56. स्वरूपी स्वतंत्र यादृष्टिक चर (i.i.d. random variables) $X_1, X_2, ..., X_n$ समरूप (θ_1, θ_2) वितरण (uniform (θ_1, θ_2) distribution) जबकि $\theta_1 < \theta_2$ अज्ञात प्राचल हैं, का पालन करते हैं। निम्नलिखित में से क्या सहायक सांख्यिकी (ancillary statistic) है ? $$1.$$ किसी भी $k < n$ के लिए $rac{\chi_{(k)}}{\chi_{(n)}}$ 2. किसी भी $$k < n$$ के लिए $\frac{X_{(n)} - X_{(k)}}{X_{(n)}}$ 3. किसी भी $$k < n$$ के लिए $\frac{X_{(k)}}{X_{(n)} - X_{(k)}}$ - 4. किसी भी k; 1 < k < n के लिए $\frac{X_{(k)} X_{(1)}}{X_{(n)} X_{(k)}}$ - 56. Let $X_1, X_2, ..., X_n$ be i.i.d. uniform (θ_1, θ_2) variables, where $\theta_1 < \theta_2$ are unknown parameters. Which of the following is an ancillary statistic? - 1. $\frac{x_{(k)}}{x_{(n)}}$ for any k < n - 2. $\frac{x_{(n)} x_{(k)}}{x_{(n)}} \text{ for any } k < n$ - 3. $\frac{X_{(k)}}{X_{(n)} X_{(k)}} \text{ for any } k < n$ - 4. $\frac{\chi_{(k)} \chi_{(1)}}{\chi_{(n)} \chi_{(k)}}$ for any k where 1 < k < n - 57. एक यादृच्छिक चर $X \sim N(\theta, 1)$; $-\infty < \theta < \infty$, के आधार पर प्राचल θ के आंकलन के प्रश्न पर विचार कीजिए। वर्ग बुटि शय (squared error loss) के अन्तर्गत यदि X का जोखिम (risk) kX की अपेक्षा समान रूप से कम हो तो, - 1. k < 0 - 2. 0 < k < 1 - 3. k > 1 - 4. k का कोई ऐसा मान नहीं है। - 57. Consider the problem of estimation of a parameter θ on the basis of X, where $X \sim N(\theta, 1)$ and $-\infty < \theta < \infty$. Under squared error loss, X has uniformly smaller risk than that of kX, for - 1. k < 0 - 2. 0 < k < 1 - 3. k > 1 - 4. no value of k - 58. सभी विकल्पों के सम्मुख (against all alternatives) दस विद्यालयों के प्रभाव की समानता (equality of effects) का परीक्षण करने के लिए प्रत्येक विद्यालय से पाँच विद्यार्थियों का यादृष्टिक प्रतिदर्श लिया गया है तथा एक संयुक्त परीक्षा में उनके अंको की विवेचना की जाती है। इनके मध्य वर्ग योगफल (Between sum of squares) व कुल वर्ग योगफल (total sum of squares) क्रमशः 180 व 500 है। मानक F-परीक्षण का p-मान है ? 1. $$P[F_{4,45} \ge 1.5]$$ 2. $$P[F_{9,40} \ge 1.6]$$ 3. $$P[F_{4,45} \ge 3.6]$$ - 4. $P[F_{9,40} \ge 2.5]$ - 58. To test the equality of effects of 10 schools against all alternatives, we take a random sample of 5 students from each school and note their marks in a common examination. "Between sum of squares" and "total sum of squares" are found to be 180 and 500 respectively. What is the p-value for the standard F-test? - 1. $P[F_{4,45} \ge 1.5]$ - 2. $P[F_{9,40} \ge 1.6]$ - 3. $P[F_{4,45} \ge 3.6]$ - 4. $P[F_{9,40} \ge 2.5]$ - एक चार विमीय याद्धिक सिदश (random vector) X का सहप्रसरण आब्यूह (covariance matrix) $$\begin{bmatrix} 1 & \rho & \rho & \rho \\ \rho & 1 & \rho & \rho \\ \rho & \rho & 1 & \rho \\ \rho & \rho & \rho & 1 \end{bmatrix}; \ \rho < 0$$ है। यदि v प्रथम मुख्य घटक (first principal component) के प्रसरण (variance) को निरूपित करता हो, तो - ए का मान 5/4 से अधिक नहीं हो सकता - ए का मान 5/4 से अधिक हो सकता है, परन्तु 4/3 से अधिक नहीं - ए का मान 4/3 से अधिक हो सकता है, परन्तु 3/2 से अधिक नहीं - ए का मान 3/2 से अधिक हो सकता है। - 59. The covariance matrix of a four dimensional random vector X is of the form $$\begin{bmatrix} 1 & \rho & \rho & \rho \\ \rho & 1 & \rho & \rho \\ \rho & \rho & 1 & \rho \\ \rho & \rho & \rho & 1 \end{bmatrix}, \text{ where } \rho < 0.$$ If v is the variance of the first principal component, then - 1. v cannot exceed 5/4 - v can exceed 5/4, but cannot exceed 4/3 17 v can exceed 4/3, but cannot exceed 3/2 - 4. v can exceed 3/2 - 60. कुल 125 विद्यार्थियों की एक कक्षा से n विद्यार्थियों का सरल याद्धिक प्रतिदर्श (simple random sample) लिया जाता है तथा प्रतिदर्श में उपस्थित विद्यार्थियों के गणित विषय के अकों का माध्य लिया जाता है । यदि सप्रतिस्थापन प्रतिदर्श (with replacement sampling) के माध्य की मानक त्रुटि (standard error). अप्रतिस्थापन प्रतिदर्श (without replacement sampling) की मानक त्रुटि की दोगुनी हो तो n का मान है 1. 32 2. 63 3. 79 4. 94 60. A simple random sample of size n will be drawn from a class of 125 students, and the mean mathematics score of the sample will be computed. If the standard error of the sample mean for "with replacement sampling" is twice as much as the standard error of the sample mean for "without replacement" sampling, the value of n is 1. 32 2. 63 3. 79 4. 94 ## भाग\PART C Unit - 1 61. यदि $$A = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 0 & -2 \\ 0 & 0 & 1 \end{pmatrix}$$ हो व $x, y, z \in \mathbb{R}$ के लिए $$Q(x, y, z) = (x y z) A \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$ हो तो निम्नतिखित में से क्या सत्य है ? - द्विघातीय रूप (quadratic form) Q के द्विकोटीय आंशिक अवकलजों (second order partial derivatives) से बना आव्यूह (matrix) 2A के बराबर है। - 2. विधातीय रूप (quadratic form) Q की श्रेणी (rank) 2 है। द्विघातीय रूप (quadratic form) Q का चिन्हक (signature) (+ + 0) है। द्विघातीय रूप (quadratic form) Q का मान किसी अशून्य सदिश (x, y, z) के लिए शून्य हो सकता है।
61. Let $$A = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 0 & -2 \\ 0 & 0 & 1 \end{pmatrix}$$ and define for $x, y, z \in \mathbb{R}$ $Q(x, y, z) = (x \ y \ z) A \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$ Which of the following statements are true? - The matrix of second order partial derivatives of the quadratic form Q is 2A - 2. The rank of the quadratic form Q is 2 - The signature of the quadratic form Q is (+ + 0) - 4. The quadratic form Q takes the value 0 for some non-zero vector (x, y, z) - 62. प्रत्येक $\alpha \in \mathbb{R}$ के लिए S_{α} निग्न प्रकार से परिमाषित है $$S_{\alpha} = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = \alpha^2\}$$ यदि $E = \bigcup_{\alpha \in \mathbb{R} \setminus \mathbb{Q}} S_{\alpha}$ हो तो निम्न में से क्या सत्य है ? - E का लंबेग परिमाण (Lebesgue measure) अनन्त है। - 2. E का एक उपसमुख्यय अरिक्त विवृत (nonempty open) है। - 3. E पथ संयोजित (path connected) है। - E^c को समाविष्ट (contain) करने वाले प्रत्येक विवृत समुख्यय (open set) का लंबेग परिमाण (Lebesgue measure) अनन्त है। - 62. For each $\alpha \in \mathbb{R}$, let $S_{\alpha} = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = \alpha^2\}$. Let $E = \bigcup_{\alpha \in \mathbb{R} \setminus \mathbb{Q}} S_{\alpha}$. Which of the following are true? - 1. The Lebesgue measure of E is infinite - 2. E contains a non-empty open set 3. E is path connected Every open set containing E^c has infinite Lebesgue measure 4-C-H S/11 RISE/18-4CH-3A - निम्नलिखित में से कौन से/सा समुख्य अगणनीय (uncountable) है - R से {0,1} में परिभाषित सभी फलनों का समृद्यय - N से (0, 1) में परिभाषित सभी फलनों का समुख्यय - N के सभी परिमित उपसमुख्ययों (finite subsets)का समुख्यय - 4. N के सभी उपसमुख्ययों का समुच्यय - 63. Which of the following sets are uncountable? - 1. The set of all functions from R to {0, 1} - 2. The set of all functions from N to {0, 1} - 3. The set of all finite subsets of N - The set of all subsets of N - 64. यदि $A = \left\{t \sin\left(\frac{1}{t}\right) \mid t \in \left(0, \frac{2}{\pi}\right)\right\}$ हो तो निम्निलिखित में से कौन से/सा कथन सत्य है - 1. सभी $n \ge 1$ के लिए $\sup(A) < \frac{2}{\pi} + \frac{1}{n\pi}$ - 2. सभी $n \ge 1$ के लिए $\inf(A) > \frac{-2}{3\pi} \frac{1}{n\pi}$ - $3. \, \sup(A) = 1$ - 4. $\inf(A) = -1$ - **64.** Let $A = \{t \sin(\frac{1}{t}) \mid t \in (0, \frac{2}{\pi})\}$. Which of the following statements are true? - 1. $\sup(A) < \frac{2}{\pi} + \frac{1}{n\pi}$ for all $n \ge 1$ - 2. $\inf(A) > \frac{-2}{3\pi} \frac{1}{n\pi}$ for all $n \ge 1$ - $3. \sup(A) = 1$ - 4. $\inf(A) = -1$ - 65. यदि $C_c(\mathbb{R}) = \{f : \mathbb{R} \to \mathbb{R} \mid f \text{ एक सतत फलन है जिसके लिए एक संहत समुच्चय (compact set) <math>K$ इस प्रकार विद्यमान है कि $f(x) = 0 \ \forall x \in K^c \}$. यदि $g(x) = e^{-x^2} \ \forall x \in \mathbb{R}$ हो तो निम्नलिखित में से कौन से/सा कथन सत्य है ? - C_c(ℝ) में f_n → g समरूपीय (uniformly) संतुष्ट करने वाला एक {f_n} अनुक्रम उपस्थित है। - C_c(ℝ) में f_n → g बिन्दुवार (pointwise) संतुष्ट करने वाला एक {f_n} अनुक्रम उपस्थित है। - 3. यदि $C_c(\mathbb{R})$ में एक अनुक्रम g पर बिन्दुवार अभिसरित (pointwise covergent) है तो वह g पर समरूपीय अभिसरित (uniformly covergent) भी होगा। - 4. $C_c(\mathbb{R})$ में कोई भी अनुक्रम ऐसा नहीं है जो g पर बिन्दुवार अभिसरित हो। - 65. Let C_c(R) = { f: R → R | f is continuous and there exists a compact set K such that f(x) = 0 for all x ∈ K^c}. Let g(x) = e^{-x²} for all x ∈ R. Which of the following statements are true? - 1. There exists a sequence $\{f_n\}$ in $C_c(\mathbb{R})$ such that $f_n \to g$ uniformly - There exists a sequence {f_n} in C_c(ℝ) such that f_n → g pointwise - If a sequence in C_c(R) converges pointwise to g then it must converge uniformly to g - There does not exist any sequence in C_c(ℝ) converging pointwise to g - **66**. यदि $a(n) = \frac{1}{10^{100}} 2^n$ $$b(n) = 10^{100} \log (n)$$ $$c(n) = \frac{1}{10^{10}} n^2,$$ हो तो निम्नलिखित में से क्या सत्य है ? - समुचित रूप से बड़े n के लिए a(n) > c(n) - 2. समुचित रूप से बड़े n के लिए b(n) > c(n) - 3. समुचित रूप से बड़े n के लिए b(n) > n - 4. समुचित रूप से बड़े n के लिए a(n) > b(n) - 66. Given that $$a(n) = \frac{1}{10^{100}} 2^n$$ $$b(n) = 10^{100} \log{(n)}$$ $$c(n) = \frac{1}{10^{10}} n^2,$$ which of the following statements are true? - 1. a(n) > c(n) for all sufficiently large n - 2. b(n) > c(n) for all sufficiently large n - 3. b(n) > n for all sufficiently large n - 4. a(n) > b(n) for all sufficiently large n - 67. एक फलन $f: \mathbb{R} \to \mathbb{R}, f(x) = \frac{a}{1+bx^2}, a,b \in \mathbb{R}, \ b \geq 0$ द्वारा परिभाषित किया जाता है। निम्नलिखित में से कौन से/सा कथन सत्य हैं ? - फलन f, पूरे R पर समरूपी सतत (uniformly continuous) तथा a a b के सभी मानों के लिए परिबद्ध (bounded) है। - फलन f. केवल b = 0 के लिए पूरे IR पर समरूपी सतत (uniformly continuous) है। - 4. फलन f. पूरे $\mathbb R$ पर समरूपी सतत (uniformly continuous) है तथा $a \neq 0, b \neq 0$ होने पर अपरिबद्ध (unbounded) है। - 67. Let $f: \mathbb{R} \to \mathbb{R}$ be given by $$f(x) = \frac{a}{1+bx^2}, a, b \in \mathbb{R}, \ b \ge 0.$$ Which of the following are true? - 1. f is uniformly continuous on compact intervals of \mathbb{R} for all values of a and b - f is uniformly continuous on \mathbb{R} and is bounded for all values of a and b - 3. f is uniformly continuous on R only if - f is uniformly continuous on ℝ and unbounded if $a \neq 0, b \neq 0$ - 68. यदि $\alpha = \int_0^\infty \frac{1}{1+t^2} dt$ हो तो निम्नलिखित में से क्या - $1. \quad \frac{da}{dt} = \frac{1}{1+t^2}$ - 2. α एक परिभेय संख्या है - 3. $\log(\alpha) = 1$ - 4. $\sin(\alpha) = 1$ $$\alpha = \int_0^\infty \frac{1}{1+t^2} dt.$$ $\alpha = \int_0^\infty \frac{1}{1+t^2} dt.$ Which of the following are true? - $1. \quad \frac{d\alpha}{dt} = \frac{1}{1+t^2}$ - α is a rational number - 3. $\log(\alpha) = 1$ - 4. $sin(\alpha) = 1$ - 69. निम्नलिखित में से कौन से/सा फलन परिसीमित परिवर्तन (bounded variation) के फलन है ? - 1. $x \in (-1,1)$ के लिए $x^2 + x + 1$ - 2. $x \in (-1,1)$ के लिए $\tan\left(\frac{nx}{2}\right)$ - 3. $x \in (-\pi, \pi)$ के लिए $\sin\left(\frac{x}{2}\right)$ - x ∈ (-1,1) के लिए √1-x² - 69. Which of the following functions are of bounded variation? - 1. $x^2 + x + 1$ for $x \in (-1, 1)$ - 2. $\tan\left(\frac{\pi x}{2}\right)$ for $x \in (-1, 1)$ - 3. $\sin\left(\frac{x}{2}\right)$ for $x \in (-\pi, \pi)$ - 4. $\sqrt{1-x^2}$ for $x \in (-1,1)$ - 70. हम वास्तविक संख्याओं (real numbers) पर $n \times n$ आव्यूहों (matrices) के समुख्य को $M_n(\mathbb{R})$ से निरूपित करते हैं व उसे युक्लिडीय समध्ट \mathbb{R}^{n^2} के रूप में कित्पत करते हैं। एक अशून्य स्तम्भ सदिश $x \in \mathbb{R}^n$ के लिए $f: M_n(\mathbb{R}) \to \mathbb{R}$ of $f(A) = \langle A^2 x, x \rangle$ द्वारा परिभाषित फलन के बारे में क्या सत्य है? - 1. f 秋極布 (linear) ま1 - 2. f अवकलनीय (differentiable) है। - f सतत है पर अवकलनीय नहीं। - 4. f अपरिबद्ध (unbounded) है। - 70. Let $M_n(\mathbb{R})$ denote the space of all $n \times n$ real matrices identified with the Euclidean space \mathbb{R}^{n^2} . Fix a column vector $x \neq 0$ in \mathbb{R}^n . Define $f: M_n(\mathbb{R}) \to \mathbb{R}$ by f(A) = $\langle A^2x, x \rangle$. Then - 1. f is linear - f is differentiable - f is continuous but not differentiable - 4. f is unbounded - 71. एक वास्तविक संख्या y के लिए [y] उस महत्तम पूर्णांक को निरूपित करता है जो y से बड़ा न हो। यदि एक फलन $f: \mathbb{R}^2 \to \mathbb{R}, \quad f(x,y) = x^{|y|}$ द्वारा परिभाषित किया जाए तो, - ।. $\int \mathbf{q} \mathbf{\hat{r}} \, \mathbb{R}^2 \, \mathbf{q} \mathbf{\hat{r}}$ सतत है। - 2. प्रत्येक $y \in \mathbb{R}$ के लिए. $x \mapsto f(x, y)$, R\{0} पर सतत है। - 3. प्रत्येक $y \in \mathbb{R}$ के लिए $y \mapsto f(x, y)$ पूरे 🏿 पर सतत है। - № के किसी भी बिन्द् पर f सतत नहीं है। - 71. For any $y \in \mathbb{R}$, let [y] denote the greatest integer less than or equal to y. Define $f: \mathbb{R}^2 \to \mathbb{R}$ by $f(x, y) = x^{|y|}$. Then - 1. f is continuous on R2 - 2. for every $y \in \mathbb{R}$, $x \mapsto f(x, y)$ is continuous on ℝ\{0} - 3. for every $x \in \mathbb{R}$, $y \mapsto f(x, y)$ is continuous on R - f is continuous at no point of ℝ² - 72. वास्तियक संख्याओं (real numbers) के उन अनुक्रमों $\mathbf{a}=(a_1,a_2,...)$ जिनके लिए $\sum 2^n|a_n|$ अभिसारित (convergent) हों, की सदिश समिष्ट (vector space) को V से निरूपित कीजिए। अब $\|\cdot\|:V\to\mathbb{R}$ को $\|a\|=\sum 2^n|a_n|$ द्वारा परिभाषित कीजिए। निम्नलिखित में से क्या सत्य है ? - V में केवल अनुक्रम (0,0,...) ही है। - 2. V परिमित विमीय (finite dimensional) है। - V का एक गणनीय रेखिक आधार (countable linear basis) है। - 4. V एक complete normed space है। - Let V denote the vector space of all sequences a = (a₁, a₂, ...) of real numbers such that ∑2ⁿ|a_n| converges. Define ||·||: V → ℝ by ||a|| = ∑2ⁿ|a_n|. Which of the following are true? - 1. V contains only the sequence (0, 0, ...) - 2. V is finite dimensional - 3. V has a countable linear basis - 4. V is a complete normed space - 73. यदि V, सम्मिश्र अदिशों € पर परिमित विमा (finite dimension) n की एक सदिश समिष्ट (vector space) हो व T: V → V एक ऐसा ऐखिक रूपान्तरण (linear transformation) हो जिसका एकमात्र अभिलक्षणिक मान (eigenvalue) 1 हो तो इनमें से कीन से निश्चित रूप से सही हैं? - 1. T I = 0 - 2. $(T-I)^{n-1}=0$ - 3. $(T-1)^n = 0$ - 4. $(T-I)^{2n}=0$ - 73. Let V be a vector space over C with dimension n. Let T: V → V be a linear transformation with only 1 as eigenvalue. Then which of the following must be true? - 1. T-I=0 - 2. $(T-I)^{n-1}=0$ - 3. $(T-I)^n = 0$ - 4. $(T-1)^{2n}=0$ - 74. यदि A एक (5×5) आव्यूह हो जिसके लिए समीकरण निकाय Ax = 0 के हलों की समिष्ट (vector space) की विमा (dimension) कम से कम दो हो तो - 1. Rank $(A^2) \le 3$ - 2. $\operatorname{Rank}(A^2) \ge 3$ - 3. $Rank(A^2) = 3$ - 4. $Det(A^2) = 0$ - 74. If A is a (5×5) matrix and the dimension of the solution space of Ax = 0 is at least two, then - 1. $Rank(A^2) \leq 3$ - 2. $Rank(A^2) \ge 3$ - 3. $Rank(A^2) = 3$ - 4. $Det(A^2) = 0$ - 75. यदि किसी $A \in M_3(\mathbb{R})$ के लिए $A^8 = I_{3\times 3}$ हो तो - A के अल्पिष्ठ बहुपद (minimal polynomial) की अधिकतम
घात (degree) केवल 2 हो सकती है। - A के अल्पिष्ठ बहुपद की अधिकतम घात केवल 3 हो सकती है। - 3. या तो $A = I_{3\times 3}$, अथवा $A = -I_{3\times 3}$ - अगणनीय (uncountably many) आब्बृह (matrix) A उपर्युक्त प्रतिबंध को संतुष्ट करते हैं। - 75. Let $A \in M_3(\mathbb{R})$ be such that $A^8 = I_{3\times 3}$. Then - minimal polynomial of A can only be of degree 2 - minimal polynomial of A can only be of degree 3 - 3. either $A = I_{3\times 3}$ or $A = -I_{3\times 3}$ - there are uncountably many A satisfying the above - 76. यदि A एक $n \times n$ आयूह हो (n > 1), जिसके लिए $A^2 7A + 12I_{n \times n} = O_{n \times n}$, जबिक $I_{n \times n}$ कोटि n के तत्समक आयूह (identity matrix) व $O_{n \times n}$ कोटि n के शून्य आयूह (zero matrix) को निरूपित करता हो, तो निम्नलिखित में से क्या सत्य है ? - त व्युक्तमणीय है। - 2. $t^2 7t + 12n = 0$, was t = Tr(A) - 3. $d^2 7d + 12 = 0$, जबकि d = Det(A) - 4. $\lambda^2 7\lambda + 12 = 0$, जबकि λ आव्यूह A का एक अभिलक्षणिक मान (eigenvalue) है। - 76. Let A be an $n \times n$ matrix (with n > 1) satisfying $A^2 7A + 12I_{n \times n} = O_{n \times n}$, where $I_{n \times n}$ and $O_{n \times n}$ denote the identity matrix and zero matrix of order n respectively. Then which of the following statements are true? - 1. A is invertible - 2. $t^2 7t + 12n = 0$ where t = Tr(A) - 3. $d^2 7d + 12 = 0$ where d = Det(A) - 4. $\lambda^2 7\lambda + 12 = 0$ where λ is an eigenvalue of A 77. बास्तविक संख्याओं (real numbers) के एक 6×6 आव्यूह A का अमिलश्राणिक बहुपद (characteristic polynomial) $(x-3)^2(x-2)^4$ व अल्पिष्ठ बहुपद (minimal polynomial) $(x-3)(x-2)^2$ है। आव्यूह A का जॉर्डन विहित रूप (Jordan canonical form) 77. Let A be a (6×6) matrix over \mathbb{R} with characteristic polynomial $= (x-3)^2(x-2)^4$ and minimal polynomial $= (x-3)(x-2)^2$. Then Jordan canonical form of A can be 1. $$\begin{pmatrix} 3 & 0 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 0 & 2 \end{pmatrix}$$ 2. $$\begin{pmatrix} 3 & 0 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 \end{pmatrix}$$ $$3. \begin{array}{c} 3 & 0 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 0 & 2 \\ \end{array}$$ 78. एक अदिश गुणन समिष्ट (inner product space) V व उसका एक उपसमुख्य 5 दिया गया है। यदि समिष्टि V पर अदिश गुणन के दूरीक (metric) द्वारा परिभाषित सारिश्वतिक (topology) के सापेक्ष समुख्य 5 के संवरण (closure) को 5 से निरूपित किया जाए तो निन्नतिखित में से क्या सत्य है ? 1. $$S = (S^{\perp})^{\perp}$$ 2. $$\bar{S} = (S^{\perp})^{\perp}$$ 3. $$\overline{span(S)} = (S^{\perp})^{\perp}$$ 4. $$S^{\perp} = ((S^{\perp})^{\perp})^{\perp}$$ 78. Let V be an inner product space and S be a subset of V. Let \(\overline{S}\) denote the closure of S in V with respect to the topology induced by the metric given by the inner product. Which of the following statements are true? 1. $$S = (S^{\perp})^{\perp}$$ 2. $$\bar{S} = (S^{\perp})^{\perp}$$ 3. $$\overline{span(S)} = (S^{\perp})^{\perp}$$ 4. $$S^{\perp} = ((S^{\perp})^{\perp})^{\perp}$$ #### Unit-2 - 79. यदि $G = S_3$ तीन वस्तुओं के क्रमचयों के समूह को निरूपित करता हो तो - G एक चक्रिक समूह (cyclic group) के एक उपसमूह के स्वरूपित (isomorphic) है। - 2. एक ऐसा चक्रिक समूह H विद्यमान है जिसके लिए G से H पर एक आच्छादक समरूपिता (onto homomorphism) परिभाषित की जा सकती है। - 3. G चक्रिक समूहों का गुणन है। - 4. G से लंकर परिमयों के योगात्मक समूह $(\mathbb{Q}, +)$ पर एक अतुच्छ समरूपिता (nontrivial homomorphism) परिमाषित की जा सकती है। 4-C-H - **79**. Let $G = S_3$ be the permutation group of 3 symbols. Then - 1. G is isomorphic to a subgroup of a cyclic group - there exists a cyclic group H such that G maps homomorphically onto H - 3. G is a product of cyclic groups - 4. there exists a nontrivial group homomorphism from G to the additive group (Q, +) of rational numbers - 80. समिकाओं $f(x) \equiv 1 \ mod(x-1)$ व $f(x) \equiv$ $0 \mod(x-3)$ को संतुष्ट करते हुए पूर्णाक गुणांको वाले बहुपदों f(x) के समुच्चय को S से निरूपित कीजिए। निम्न में से क्या सत्य है ? - 1. S रिक्त है। - 2. S एकल है। - 3. S परिमित अरिक्त समुच्चय है। - 4. S अपरिमित परन्तु गणनीय है। - 80. Let S be the set of polynomials f(x) with integer coefficients satisfying $f(x) \equiv 1 \, mod(x-1)$ $f(x) \equiv 0 \, mod(x-3).$ Which of the following statements are true? - 1. S is empty - S is a singleton - 3. S is a finite non-empty set - 4. S is countably infinite - 81. एक विवृत सुबंधित उपसमुख्यय (open connected subset) $\Omega \subseteq \mathbb{C}$ तथा $E = \{z_1, z_2, ..., z_r\} \subseteq \Omega$ लीजिए यदि $f:\Omega \to \mathbb{C}$ ऐसा फलन हो जिसके लिए $f_{|(\Omega \setminus E)}$ वैश्लेषिक (analytic) हो तो f पूरे Ω पर वैश्लेषिक होगा यदि - 1. Ω पर f सतत है। - 2. Ω पर f परिबद्ध (bounded) है। - 3. प्रत्येक j के लिए z_i पर f का लॉरेंट श्रेणी प्रसारण (Laurent series expansion) $\sum_{m\in\mathbb{Z}}a_m\left(z-z_i\right)^m$ होने पर m = -1, -2, -3, ... के लिए $a_m = 0$ हो। 4. प्रत्येक j के लिए z_j पर f का लॉरेंट श्रेणी प्रसारण (Laurent series expansion) $\sum_{m\in\mathbb{Z}}a_{m}\left(z-z_{j}\right)^{m}$ होने पर $a_{-1}=0$ हो। 81. Let Ω be an open connected subset of \mathbb{C} . Let $E = \{z_1, z_2, ..., z_r\} \subseteq \Omega$. Suppose that $f:\Omega\to\mathbb{C}$ is a function such that $f_{|(\Omega\setminus E)}$ is analytic. Then f is analytic on Ω if - 1. f is continuous on Ω - 2. f is bounded on Ω - 3. for every j, if $\sum_{m\in\mathbb{Z}} a_m (z-z_j)^m$ is Laurent series expansion of f at z_i , then $a_m = 0$ for m = -1, -2, -3, ... - 4. for every j, if $\sum_{m\in\mathbb{Z}} a_m (z-z_i)^m$ is Laurent series expansion of f at z_i , then $a_{-1} = 0$ - 82. एक वैश्लेषिक फलन $f: \mathbb{C} \to \mathbb{C}$ एक बहुपदीय फलन (polynomial function) होता है यदि - प्रत्येक बिन्दु a ∈ C के लिए व a पर अनन्त श्रेणी प्रसारण (power series expansion) f(z) = $\sum_{0}^{\infty} a_{n}(z-a)^{n}$ में कम से कम एक n के लिए $a_n = 0$ हो। - 2. $\lim_{|z|\to\infty} |f(z)| = \infty$ - 3. कुछ M के लिए $\lim_{|z|\to\infty} |f(z)| = M$ - 4. समुचित रूप से बड़े |z| व कुछ n के लिए $|f(z)| \leq M|z|^n$ हो। - 82. Suppose that $f: \mathbb{C} \to \mathbb{C}$ is an analytic function. Then f is a polynomial if - 1. for any point $a \in \mathbb{C}$, if $f(z) = \sum_{n=0}^{\infty} a_n (z - a)^n$ is a power series expansion at a_n , then $a_n = 0$ for at least one n - 2. $\lim_{|z|\to\infty} |f(z)| = \infty$ - 3. $\lim_{|z|\to\infty} |f(z)| = M$ for some M - 4. $|f(z)| \le M|z|^n$ for |z| sufficiently large and for some n - 83. इकाई विवृत चक्रिका (open unit disk), जिसका केन्द्र 0 € C है, को D से निरूपित कीजिए। एक वैश्लेषिक फलन $f \colon \mathbb{D} o \mathbb{C}$ लीजिए। यदि f = u +iv, जबकि u व v फलन f के वास्तविक व काल्पनिक भागों को निरूपित करते हो; व f(z) = $\sum a_n z^n$ फलन की अनन्त श्रेणी (power series) हो, तो f एक अचर फलन होगा यदि - 1. र् वैश्लेषिक है। - 2. $u(1/2) \ge u(z) \quad \forall z \in \mathbb{D}$ - 3. समुच्यय $\{n \in \mathbb{N} \mid a_n = 0\}$ अपरिमित है। - 4. D के एक बंद परिपथ (closed loop) y के लिए यदि $a \in \mathbb{D}$, $|a| \ge 1/2$ हो तो $\int_{\gamma} \frac{f(z)dz}{(z-a)^2} = 0$ होगा। - 83. Let D be the open unit disk centered at 0 in C and f: D → C be an analytic function. Let f = u + iv, where u, v are the real and imaginary parts of f. If f(z) = ∑a_nzⁿ is the power series of f, then f is constant if - 1. \bar{f} is analytic - 2. $u(1/2) \ge u(z) \quad \forall z \in \mathbb{D}$ - 3. The set $\{n \in \mathbb{N} \mid a_n = 0\}$ is infinite - 4. For any closed curve γ in \mathbb{D} , $\int_{\gamma} \frac{f(z)dz}{(z-a)^2} = 0 \quad \forall a \in \mathbb{D} \text{ with } |a| \ge 1/2$ - 84. निम्नलिखित में से कौन से/सा कथन सत्य है ? - 1. यदि $\{a_k\}$ परिबद्ध (bounded) है तो इकाई विवृत चक्रिका (open unit disk) पर $\sum_{0}^{\infty} a_k z^k$ एक वैश्लेषिक फलन को परिभाषित करती है। - 2. यदि $\sum_{0}^{\infty} a_k z^k$ इकाई विवृत चक्रिका (open unit disk) पर एक वैश्लेषिक फलन को परिभाषित करे तो अनुक्रम $\{a_k\}$ शून्य पर अभिसरित होगा। - 3. दो अनन्त श्रेणी फलन (power series functions) $f(z) = \sum_0^\infty a_k z^k$ व $g(z) = \sum_0^\infty b_k z^k$ जिनकी अभिसरण त्रिज्याएं (radii of convergence) । हैं, का गुणनफल $f \cdot g$ इकाई विवृत चिक्रका (open unit disk) पर एक अनन्त श्रेणी (power series) $\sum_0^\infty c_k z^k$ द्वारा परिभाषित किया जाएगा। - 4. यदि $f(z) = \sum_{0}^{\infty} a_k z^k$ की अभिसरण त्रिज्या (radius of convergence) । हो तो $\Omega = \{z \in \mathbb{C} \mid |z| \le 1\}$ पर f सतत होगा। - 84. Which of the following statements are true? - If {a_k} is bounded then ∑₀[∞] a_kz^k defines an analytic function on the open unit disk - If ∑₀[∞] a_kz^k defines an analytic function on the open unit disk then {a_k} must converge to zero - 3. If $f(z) = \sum_{0}^{\infty} a_k z^k$ and $g(z) = \sum_{0}^{\infty} b_k z^k$ are two power series functions whose radii of convergence are 1, then the product $f \cdot g$ has a power series representation of the form $\sum_{0}^{\infty} c_k z^k$ on the open unit disk - If f(z) = ∑₀[∞] a_kz^k has a radius of convergence 1, then f is continuous on Ω = {z ∈ C | |z| ≤ 1} - 85. निम्नलिखित में से क्या सत्य है ? - प्रत्येक संहत दूरीक समिट (compact metric space) पृथक्करणीय (separable) होती है। - यदि एक दूरीक समिट (X, d) पृथक्करणीय हो तो दूरीक d विविक्त (discrete) नहीं हो सकता। - प्रत्येक पृथक्करणीय दूरीक समध्दि द्वितीय गणनीय (second countable) होती है। - प्रत्येक प्रथम गणनीय सांस्थितिक समस्टि (first countable topological space) पृथक्करणीय होती है। - 85. Which of the following statements are true? - Every compact metric space is separable - If a metric space (X, d) is separable, then the metric d is not the discrete metric - Every separable metric space is second countable - Every first countable topological space is separable - 86. एक सांस्थितिक समस्टि (topological space) X के एक अरिक्त समुख्यय A के संबंध में
क्या सत्य है ? - यदि X\A कहीं भी सघन नहीं (nowhere dense) है तो X में A सघन (dense) होगा। - यदि X में A सघन है तो X\A कहीं भी सघन नहीं होगा। - यदि X\A का अंतर (interior) रिक्त हो तो X में A सघन होगा। - यदि X में A सघन हो तो X\A का अंतर (interior) रिक्त होगा। - 86. Let X be a topological space and A be a non-empty subset of X. Then one can conclude that - A is dense in X, if (X\A) is nowhere dense in X - (X\A) is nowhere dense in X, if A is dense in X - A is dense in X, if the interior of (X\A) is empty - the interior of (X\A) is empty, if A is dense in X - 87. निम्नलिखित में से कौन से/सा कथन सत्य है ? - एक परिमित क्षेत्र (finite field) का गुणात्मक समृह (multiplicative group) सदैव चक्रिक (cyclic) होता है। - एक परिमित क्षेत्र (finite field) का योगात्मक समूह (additive group) सदैव चक्रिक होता है। - दी गई प्रत्येक कोटि का परिमित क्षेत्र सदैव परिभाषित होता है। - दी गई प्रत्येक कोटि का अधिक से अधिक एक परिमित क्षेत्र (स्वरूपित क्षेत्रॉ / isomorphic fields को समान मानकर) ही परिमापित होता है। - 87. Which of the following statements are true? - The multiplicative group of a finite field is always cyclic - The additive group of a finite field is always cyclic - There exists a finite field of any given order - There exists at most one finite field (upto isomorphism) of any given order - 88. यदि $f(x) \in \mathbb{Z}[x]$ एक एकगुणांकीय बहुपद (monic polynomial) हो तो f के मूलों के सम्बन्ध में क्या सत्य है ? - 1. वे Z में उपस्थित हो सकते हैं। - वे सदैव (R\Q) ∪ Z में ही उपस्थित होते हैं। - वे सदैव (C\Q) ∪ Z में ही उपरिधत होते हैं। - वे (Q\Z) में उपस्थित हो सकते हैं। - 88. Let $f(x) \in \mathbb{Z}[x]$ be a monic polynomial. Then the roots of f - 1. can belong to Z - 2. always belong to (R\Q) ∪ Z - always belong to (C\Q) ∪ Z - can belong to (Q\Z) - 89. निम्नलिखित में से क्या सत्य है ? - एक पूर्णांकीय प्रान्त (integral domain) का उपवलय (subring) भी एक पूर्णांकीय प्रान्त होता है। - एक अद्वितीय गुणनखंडीय प्रान्त (unique factorization domain) का उपवलय भी एक अद्वितीय गुणनखंडीय प्रान्त होता है। - एक मुख्य गुणजावली प्रान्त (principal ideal domain) का उपवलय भी एक मुख्य गुणजावली प्रान्त होता है। - एक यूक्लिडीय प्रान्त (Euclidean domain) का उपवलय भी एक यूक्लिडीय प्रान्त होता है। - 89. Which of the following statements are true? - A subring of an integral domain is an integral domain - A subring of a unique factorization domain (UFD) is a UFD - A subring of a principal ideal domain (PID) is a PID - A subring of an Euclidean domain is an Euclidean domain - 90. एक समूह G के लिए |G| = 96 है। यदि H तथा K, समूह G के उपसमूह हों जिनके लिए |H| = 12 व |K| = 16 हो तो - 1. $H \cap K = \{e\}$ - 2. H∩K ≠ {e} - 3. H ∩ K आबेली (Abelian) है। - H ∩ K आवेली (Abelian) नहीं है। - 99. Let G be a group with |G| = 96. Suppose H and K are subgroups of G with |H| = 12 and |K| = 16. Then - 1. $H \cap K = \{e\}$ - 2. H∩K ≠ {e} - 3. H n K is Abelian - 4. H∩K is not Abelian #### UNIT -3 - 91. एक व्युक्तमणीय आव्यूह (non-singular matrix) A = L + D + U, जबिक L व U क्रमशः उर्ध्व तिभुज आव्यूह (upper triangular matrix) व अधो तिभुज आव्यूह (lower triangular matrix) जिनके विकर्ण की सभी प्रविष्टियाँ शून्य हैं, तथा D एक विकर्ण आव्यूह (diagonal matrix) हैं, दिया गया है। यदि Ax = b के हल को x^* द्वारा निरूपित किया जाए, तो ||H|| < 1 के साथ गाउस-सीजेज पुनरावृत्ति युवित (Gauss-Seidel iteration method) - $x^{(k+1)} = Hx^{(k)} + c$, k = 0, 1, 2, ... से x^* पर अभिसरित (converge) हुआ जा सकता है यदि H का मान है - $1.-D^{-1}(L+U)$ - 2. $-(D+L)^{-1}U$ - 3. $-D(L+U)^{-1}$ - 4. $-(L-D)^{-1}U$ - 91. Assume that a non-singular matrix A = L + D + U where L and U are lower and upper triangular matrices respectively with all diagonal entries are zero, and D is a diagonal matrix. Let x* be the solution of Ax = b. Then the Gauss-Seidel iteration method x^(k+1) = Hx^(k) + c, k = 0, 1, 2, ... with ||H|| < 1 converges to x* provided H is equal to</p> - 1. $-D^{-1}(L+U)$ - 2. $-(D+L)^{-1}U$ - 3. $-D(L+U)^{-1}$ - 4. $-(L-D)^{-1}U$ - एक नियत अचर a ∈ R लीजिए। प्रथम कोटि के आशिक अवकल समीकरण $\frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = 0$, $x \in \mathbb{R}$, t > 0 जिसके आरंभिक मान $u(x,0) = u_0(x)$, $x \in \mathbb{R}$ है और जहाँ u_0 एक सतततः अयकलनीय फलन है, के सम्बन्ध में निम्नलिखित कथनों पर विचार कीजिए - S1: एक ऐसा परिबद्ध फलन (bounded function) संभव है जिसके लिए उपर्युक्त समीकरण का हल य अपरिबद्ध (unbounded) हो। - S_2 : यदि u_0 एक संहत समुख्यय (compact set) के बाहर शून्य हो तो प्रत्येक नियत T>0 के लिए ऐसा संहत समुख्यय (compact set) $K_T \subset \mathbb{R}$ विद्यमान होता है कि $x \notin K_T$ के लिए u(x,T) शून्य हो। बताइये कि निम्न में क्या सत्य है ? - ।. S_1 सत्य है और S_2 असत्य है। - 2. S_1 और S_2 दोनों सत्य हैं। - S_1 असत्य है और S_2 सत्य है। - 4. S_1 और S_2 दोनों असत्य हैं। - 92. Let a be a fixed real constant. Consider the first order partial differential equation $\frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = 0$, $x \in \mathbb{R}$, t > 0 with the initial data $u(x,0) = u_0(x)$, $x \in \mathbb{R}$ where u_0 is a continuously differentiable function. Consider the following two statements. - S₁: There exists a bounded function u₀ for which the solution u is unbounded. - S_2 : If u_0 vanishes outside a compact set then for each fixed T > 0 there exists a compact set $K_T \subset \mathbb{R}$ such that u(x,T) vanishes for $x \notin K_T$. Which of the following are true? - 1. S₁ is true and S₂ is false - 2. S_1 is true and S_2 is also true - 3. S_1 is false and S_2 is true - 4. S_1 is false and S_2 is also false - 93. यदि u(x,t) समीकरण $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}, \ 0 < x < 1, \ t > 0$ $u(x,0) = 1 + x + \sin(\pi x)\cos(\pi x)$ $u(0,t) = 1, \quad u(1,t) = 2$ का इन से नो - 1. $u\left(\frac{1}{2}, \frac{1}{4}\right) = \frac{3}{2}$ - $2. \quad u\left(\frac{1}{2}, \frac{1}{2}\right) = \frac{3}{2}$ - 3. $u\left(\frac{1}{4}, \frac{3}{4}\right) = \frac{5}{4} + \frac{1}{2}e^{-3\pi^2}$ - 4. $u\left(\frac{1}{4},1\right) = \frac{5}{4} + \frac{1}{2}e^{-4\pi^2}$ - 93. If u(x,t) is the solution of $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}, \ 0 < x < 1, \ t > 0$ $u(x,0) = 1 + x + \sin(\pi x)\cos(\pi x)$ $u(0,t) = 1, \quad u(1,t) = 2$ then - $1. \quad u\left(\frac{1}{2}, \frac{1}{4}\right) = \frac{3}{2}$ - $2. \quad u\left(\frac{1}{2},\frac{1}{2}\right) = \frac{3}{2}$ - 3. $u\left(\frac{1}{4}, \frac{3}{4}\right) = \frac{5}{4} + \frac{1}{2}e^{-3\pi^2}$ - 4. $u\left(\frac{1}{4},1\right) = \frac{5}{4} + \frac{1}{2}e^{-4\pi^2}$ - एक सतत फलन a: [0, ∞) → R लीजिए व अवकल समीकरण $y'(x)=a(x)y(x), \ x>0, \ y(0)=y_0\neq 0$ पर विचार कीजिए। निम्नलिखित में से क्या सत्य है ? - 1. यदि $\int_0^\infty |a(x)| dx < \infty$, हो तो y परिबद्ध (bounded) है। - यदि ∫₀[∞] |a(x)|dx < ∞, हो तौ सीमा lim_{x→∞} y(x) अस्तित्व में है। - 3. यदि $\lim_{x\to\infty} a(x) = 1$, हो तो $\lim_{x\to\infty} |y(x)| = \infty$ होगा। - 4. यदि $\lim_{x\to\infty} a(x) = 1$, हो तो y एकदिष्ट (monotone) होगा। - 94. Assume that a: [0, ∞) → R is a continuous function. Consider the ordinary differential equation $$y'(x) = a(x)y(x), x > 0, y(0) = y_0 \neq 0.$$ 4-C-H S/11 RISE/18-4CH-4A Which of the following statements are true? - 1. If $\int_0^\infty |a(x)| dx < \infty$, then y is bounded - 2. If $\int_0^\infty |a(x)| dx < \infty$, then $\lim_{x\to\infty} y(x)$ exists - 3. If $\lim_{x\to\infty} a(x) = 1$, then $\lim_{x\to\infty} |y(x)| = \infty$ - 4. If $\lim_{x\to\infty} a(x) = 1$, then y is monotone - 95. अवकल समीकरणों के निकाय $$\frac{dx}{dt} = 2x - 7y$$ $$\frac{dy}{dt} = 3x - 8y$$ के क्रांतिक बिन्दु (0,0) के सम्बन्ध में क्या सत्य है ? - 1. यह अंततोगत्वा स्थिर बिन्दु (asymptotically stable node) है। - 2. यह अस्थिर बिन्दु (unstable node) है। - 3. यह अंतगोगत्वा स्थिर कुंडली (asymptotically stable spiral) \$1 - 4. यह अस्थिर कुंडली (unstable spiral) है। - 95. Consider the system of differential equations $\frac{dx}{dt} = 2x - 7y$ $$\frac{dy}{dt} = 3x - 8y$$ Then the critical point (0,0) of the system is an - 1. asymptotically stable node - 2. unstable node - 3. asymptotically stable spiral - 4. unstable spiral - 96. स्टर्म-ल्यवील समस्या $$y'' + \lambda y = 0$$, $y(0) = 0$ $\forall y(\pi) = 0$ पर विचार कीजिए और बताइये कि निम्नलिखित में से क्या सत्य है ? - इसके गणनीय (countably many) अभिलक्षणिक मान (characteristic values) है। - 2. इसके अगणनीय (uncountably many) अभिलक्षणिक मान है। - 3. अभिलक्षणिक मान λ से संबद्ध प्रत्येक अभिलक्षणिक फलन के अन्तराल $(0, \pi)$ में कुल $|\sqrt{\lambda}|-1$ शुन्यक है। - अभिलक्षणिक मान त्रे से संबद्ध प्रत्येक अभिलक्षणिक फलन के अन्तराल $(0, \pi)$ में कुल $|\sqrt{\lambda}|$ शुन्यक है। - 96. Consider the Sturm-Liouville problem $y'' + \lambda y = 0$, y(0) = 0 and $y(\pi) = 0$. Which of the following statements are true? - 1. There exist only countably many characteristic values - There exist uncountably many characteristic values - 3. Each characteristic function corresponding to the characteristic value \(\lambda \) has exactly $|\sqrt{\lambda}| - 1$ zeros in $(0, \pi)$ - 4. Each characteristic function corresponding to the characteristic value λ has exactly $|\sqrt{\lambda}|$ zeros in $(0, \pi)$ - 97. यदि एक सरल आवर्ती दोलक (simple harmonic oscillator) का हैमिल्टॉनियम (Hamiltonian) $$H(p,q) = \frac{p^2}{2m} + \frac{k}{2}q^2$$ है, तो H से संबद्ध लाग्राजियन (Lagrangian) की संभावना है 1. $L = \frac{1}{2}m\dot{q}^2 - \frac{k}{2}q^2$ 1. $$L = \frac{1}{2}m\dot{q}^2 - \frac{k}{2}q^2$$ 2. $$L = \frac{1}{2}m\dot{q}^2 - \frac{k}{2}(q^2 + 3q^2\dot{q})$$ 3. $$L = \frac{1}{2}m\dot{q}^2 + \frac{k}{2}q^2$$ 4. $$L = \frac{1}{2}m\dot{q}^2 + \frac{k}{2}(q^2 + 3q^2\dot{q})$$ 97. The Hamiltonian for a simple harmonic oscillator is $H(p,q) = \frac{p^2}{2m} + \frac{k}{2}q^2$. Then a possible Lagrangian corresponding to H 1. $$L = \frac{1}{2}m\dot{q}^2 - \frac{k}{2}q^2$$ 2. $$L = \frac{1}{2}m\dot{q}^2 - \frac{k}{2}(q^2 + 3q^2\dot{q})$$ 3. $$L = \frac{1}{2}m\dot{q}^2 + \frac{k}{2}q^2$$ 4. $$L = \frac{1}{2}m\dot{q}^2 + \frac{k}{2}(q^2 + 3q^2\dot{q})$$ 98. ते के किस मान के लिए, समीकरण $$\phi(x) = \lambda
\int_0^{\pi} K(x,t) \, \phi(t) \, dt, \qquad 0 \le x \le \pi$$ जबिक $$K(x,t) = \begin{cases} \sin x \cos t, & 0 \le x \le t \\ \cos x \sin t, & t \le x \le \pi \end{cases}$$ है, के अतुच्छ (non-trivial) हल है ? 1. $$\left(n+\frac{1}{2}\right)^2-1, n\in\mathbb{N}$$ 2. $$n^2 - 1$$, $n \in \mathbb{N}$ 3. $$\frac{1}{2}(n+1)^2 - 1$$, $n \in \mathbb{N}$ 4. $$\frac{1}{2}(2n+1)^2-1$$, $n \in \mathbb{N}$ 98. The values of λ for which the following equation has a non-trivial solution $$\phi(x) = \lambda \int_0^{\pi} K(x, t) \, \phi(t) \, dt, \qquad 0 \le x \le \pi$$ where $K(x, t) = \begin{cases} \sin x \cos t, & 0 \le x \le t \\ \cos x \sin t, & t \le x \le \pi \end{cases}$ 1. $$\left(n + \frac{1}{2}\right)^2 - 1, \ n \in \mathbb{N}$$ 2. $$n^2 - 1, n \in \mathbb{N}$$ 3. $$\frac{1}{2}(n+1)^2 - 1$$, $n \in \mathbb{N}$ 4. $$\frac{1}{2}(2n+1)^2-1$$, $n \in \mathbb{N}$ #### 99. समाकल समीकरण $$\phi(x) = \lambda \int_0^{\pi} [\cos x \cos t - 2\sin x \sin t] \, \phi(t) \, dt + \cos 7x, \quad 0 \le x \le \pi$$ कें संबंध में निम्न में से क्या सत्य है ? - 1. प्रत्येक λ ∈ ℝ के लिए उपर्युक्त समीकरण का हल संभव है। - 2. त ∈ № के कुछ मानों के लिए उपर्युक्त समीकरण का हल संभव नहीं है। - 3. λ ∈ ℝ के कुछ मानों के लिए उपर्युक्त समीकरण के हलों की संख्या एक से अधिक, परन्तु परिमित है - 4. λ∈ ℝ के कुछ मानों के लिए उपर्युक्त समीकरण के अपरिमित हल हैं। ## 99. Consider the integral equation $$\phi(x) = \lambda \int_0^{\pi} [\cos x \cos t - 2\sin x \sin t] \, \phi(t) \, dt + \cos 7x, \quad 0 \le x \le \pi$$ Which of the following statements are true? - 1. For every $\lambda \in \mathbb{R}$, a solution exists - 2. There exists $\lambda \in \mathbb{R}$ such that solution does not exist - There exists λ ∈ ℝ such that there are more than one but finitely many solutions - There exists λ ∈ R such that there are infinitely many solutions 100. $$f[y] = \int_0^1 y'^2(x) dx$$, जबकि $y(0) = 0$, $y(1) = 1$ व $\int_0^1 y(x) dx = 0$ हो. की पराकोटि (extremal) है 1. $$3x^2 - 2x$$ $$2. 8x^3 - 9x^2 + 2x$$ 3. $$\frac{5}{3}x^4 - \frac{2}{3}x$$ 4. $$\frac{-21}{2}x^5 + 10x^4 + 4x^3 - \frac{5}{2}x$$ ## 100. The extremal of the functional $$J[y] = \int_0^1 y'^2(x) dx$$ subject to $y(0) = 0$, $y(1) = 1$ and $\int_0^1 y(x) dx = 0$ is $$1. \quad 3x^2 - 2x$$ 2. $$8x^3 - 9x^2 + 2x$$ 3. $$\frac{5}{3}x^4 - \frac{2}{3}x$$ 4. $$\frac{-21}{2}x^5 + 10x^4 + 4x^3 - \frac{5}{2}x$$ 101. $$J[y] = \int_0^{\log 3} [e^{-x}y'^2 + 2e^x(y' + y)]dx$$ जबकि y (log 3) = 1 व y (0) अप्रतिबंधित है, की ग्राह्य पराकोटि (admissible extremal) है 1. $$4 - e^x$$ 1. $$4 - e^x$$ 2. $10 - e^{2x}$ 3. $$e^x - 2$$ 4. $e^{2x} - 8$ ### 101. The admissible extremal for $$J[y] = \int_0^{\log 3} [e^{-x}y'^2 + 2e^x(y' + y)]dx$$ where y (log 3) = 1 and y(0) is free is 1. $4 - e^x$ 2. $10 - e^{2x}$ 3. $e^x - 2$ 4. $e^{2x} - 8$ 102. अग्र अंतर संकारक (forward difference operator) इस प्रकार परिभाषित है: $$\Delta U_n = U_{n+1} - U_n$$. निम्नलिखित में से किस अंतर समीकरण (difference equation) का एक व्यापक हल अपरिबद्ध (unbounded) है ? $$1. \quad \Delta^2 U_n - 3\Delta U_n + 2U_n = 0$$ 2. $$\Delta^2 U_n + \Delta U_n + \frac{1}{4} U_n = 0$$ 3. $$\Delta^2 U_n - 2\Delta U_n + 2U_n = 0$$ 4. $\Delta^2 U_{n+1} - \frac{1}{3}\Delta^2 U_n = 0$ - 102. The forward difference operator is defined as $\Delta U_n = U_{n+1} U_n$. Then which of the following difference equations has an unbounded general solution? - $1. \quad \Delta^2 U_n 3\Delta U_n + 2U_n = 0$ - 2. $\Delta^2 U_n + \Delta U_n + \frac{1}{4} U_n = 0$ - $3. \quad \Delta^2 U_n 2\Delta U_n + 2U_n = 0$ - 4. $\Delta^2 U_{n+1} \frac{1}{3} \Delta^2 U_n = 0$ #### Unit - 4 - 103.दो स्वतंत्र चरघातांकी यादिच्छक चरों X व Y का माध्य क्रमशः θ व 2θ है, जबिक θ अज्ञात है। निम्न में से क्या सत्य है ? - 1. θ के लिए X + 2Y पर्याप्त है। - 2. H_0 : $\theta = 1$ का H_1 : $\theta < 1$ के सापेक्ष परीक्षण करने के लिए X + 2Y पर आधारित दाहिना—पुच्छ परीक्षण (Right-tailed test) सावित्रिक सर्व प्रभावी (UMP) है। - 3. H_0 : $\theta = 1$ का H_1 : $\theta < 1$ के सापेक परीक्षण करने के लिए 2X + Y पर आधारित बाँया—पुच्छ परीक्षण (left-tailed test) सावित्रिक सर्व प्रभावी (UMP) है। - 4. H_0 : $\theta = 1$ का H_2 : $\theta \neq 1$ के साक्षेप परीक्षण हेतु कोई भी परीक्षण सार्वत्रिक सर्व प्रभावी (UMP) परीक्षण नहीं हो सकता। - 103. Suppose X and Y are two independent exponential random variables with means θ and 2θ respectively, where θ is unknown. Which of the following statements are true? - 1. X + 2Y is sufficient for θ - 2. Right-tailed test based on X + 2Y is UMP for testing H_0 : $\theta = 1$ against H_1 : $\theta < 1$ - 3. Left-tailed test based on 2X + Y is UMP for testing H_0 : $\theta = 1$ against H_1 : $\theta < 1$ - UMP test does not exist for testing H₀: θ = 1 against H₂: θ ≠ 1 - 104. स्वरूपी स्वतंत्र बंटित (i.i.d.) यादृष्टिक चर $X_1, X_2, ..., X_n, n \geq 3$ प्रायिकता बंटन $N(\mu_1, \sigma_1^2)$ का पालन करते हैं। इसी प्रकार स्वरूपी स्वतंत्र बंटित (i.i.d.) यादृष्टिक चर $Y_1, Y_2, ..., Y_n$ प्रायिकता बंटन $N(\mu_2, \sigma_2^2)$ का पालन करते हैं। यह भी मान लीजिए कि सभी X_i व Y_j सभी स्वतंत्र हैं। यदि द्विचरीय डाटा $(X_1,Y_1),(X_2,Y_2),\dots,(X_n,Y_n)$ का सहसंबंध गुणांक (correlation coefficient) r हो तो - 1. सभी $n \ge 3$ के लिए $\frac{r^2(n-2)}{1-r^2}$ का बंटन $F_{1,n-2}$ है (1 व n-2 स्वातंत्र्य कोटि, (d,f.) का F-बंटन) - 2. सभी $n\geq 3$ के लिए $\frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$ का बंटन t_{n-2} है (n-2) स्वातंत्र्य कोटि (d,f,\cdot) का t-बंटन) - 3. n = 3 के लिए $\frac{r^2}{1-r^2}$ उसी बंटन का पालन करता है जिसका की कॉशी यादृष्टिक घर (Cauchy variable) का वर्ग - सभी n ≥ 3 के लिए r² बीटा बंटन का पालन करता है। - 104. Suppose that for $n \ge 3$, $X_1, X_2, ..., X_n$ are i.i.d. $\sim N(\mu_1, \sigma_1^2)$ and $Y_1, Y_2, ..., Y_n$ are i.i.d. $\sim N(\mu_2, \sigma_2^2)$. Assume further that the X_l 's and the Y_j 's are independent. Let r be the correlation coefficient computed from the bivariate data (X_l, Y_l) (X_l, Y_l) (X_l, Y_l) $(X_1, Y_1), (X_2, Y_2), \dots, (X_n, Y_n)$. Then 1. $\frac{r^2(n-2)}{1-r^2}$ has $F_{1,n-2}$ distribution (F-distribution with 1 and n-2 d. f.) for all $n \ge 3$ - 2. $\frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$ has t_{n-2} distribution (t-distribution with n-2 d. f.) for all $n \ge 3$ - 3. $\frac{r^2}{1-r^2}$ has the distribution of the square of a Cauchy variable for n=3 - 4. r^2 has a beta distribution for all $n \ge 3$ - 105. दो यादृष्टिक घर X_1 व X_2 स्वरूपी स्वतंत्र बंटित (i.i.d.) है व उनका प्रायिकता बंटन फलन (probability mass function) $f_{\theta}(x) = \theta^x (1-\theta)^{1-x} \; ; \; x = 0,1, \text{ जबकि } \theta \in (0,1)$ है। निम्न में से क्या सत्य है ? - X₁ + 2X₂ एक पर्याप्त साख्यिकी (sufficient statistic) है। - 2. $X_1 X_2$ एक पर्याप्त सांख्यिकी है। - 3. $X_1^2 + X_2^2$ एक पर्याप्त सांख्यिकी है। - 4. $X_1^2 + X_2$ एक पर्याप्त सांख्यिकी है। - 105. Let X_1 and X_2 be i.i.d. with probability mass function $f_{\theta}(x) = \theta^x (1 \theta)^{1-x}$; x = 0, 1, where $\theta \in (0, 1)$. Which of the following statements are true? - 1. $X_1 + 2X_2$ is a sufficient statistic - 2. $X_1 X_2$ is a sufficient statistic - 3. $X_1^2 + X_2^2$ is a sufficient statistic - 4. $X_1^2 + X_2$ is a sufficient statistic - 106. दो स्वरूपी स्वतंत्र बंटित (i.i.d.) याद्ध्यिक घर X व Y प्राचल I के चरधातांकी बंटन (exponential distribution) का पालन करते है। यदि W = X +Y व U = X/(X + Y) हो तो निम्न में से क्या सत्य 食? - 1. E(U) = 1/2 - अन्तराल (0,1) में U समक्तपी (uniform) है। - 3. W, U स्वतंत्र है। - W, U असहसंबंधित (uncorrelated) हैं। - 106. Let X and Y be i.i.d. exponential random variables with parameter 1. Define, W = X + Y and U = X/(X+Y)Which of the following are true? - 1. E(U) = 1/2 - U is uniform on (0,1) - 3. W, U are independent - 4. W, U are uncorrelated, but dependent - 107. यदि $\{X_i\}_{i\geq 1}$ स्वरूपी स्वतंत्र बंटित (identical independently distributed) याद्धिक चरों का अनुक्रम हो जिसके लिए $E(X_i) = 0$ व $V(X_I) = 1$ हो तो निम्न में से क्या सत्य है ? 1. $$\frac{1}{n} \sum_{i=1}^{n} X_i^2 \to 0 \qquad (प्रायिकता में)$$ 2. $$\frac{1}{n^{3/4}} \sum_{i=1}^{n} X_i \to 0$$ (प्राधिकता में) 3. $$\frac{1}{n^{1/2}} \sum_{i=1}^{n} X_i \to 0$$ (प्राधिकता में) 4. $$\frac{1}{n} \sum_{i=1}^{n} X_i^2 \rightarrow 1$$ (प्रायिकता में) 107. Let $\{X_i\}_{i\geq 1}$ be a sequence of i.i.d. random variables with $E(X_i) = 0$ and $V(X_i) = 1$. Which of the following are true? 1. $$\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2} \rightarrow 0$$ in probability 2. $$\frac{1}{n^{3/4}} \sum_{i=1}^{n} X_i \to 0 \text{ in probability}$$ 3. $$\frac{1}{n^{1/2}}\sum_{i=1}^{n}X_{i} \rightarrow 0$$ in probability 4. $$\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2} \rightarrow 1$$ in probability 108. अवस्था समिटि (state space) $S = \{1, 2, 3\}$ पर एक मार्कीव श्रृंखला का संक्रमण आव्यूह (transition $$P = \begin{pmatrix} 0 & 1/2 & 1/2 \\ 1/2 & 0 & 1/2 \\ 1/2 & 1/2 & 0 \end{pmatrix}$$ है। यदि उस मार्कीव शृंखला का स्थिर बंटन (stationary distribution) $\pi = (\pi_1, \pi_2, \pi_3)$ हो व d(1) अवस्था 1 के आवर्त को निरूपित करता हों तो निम्न में से क्या सत्य है ? - 1. d(1) = 1 - 2. d(1) = 2 - 3. $\pi_1 = 1/2$ - 4. $\pi_1 = 1/3$ 108. Consider a Markov chain on state space $S = \{1, 2, 3\}$ with transition probability matrix P given by $$P = \begin{pmatrix} 0 & 1/2 & 1/2 \\ 1/2 & 0 & 1/2 \\ 1/2 & 1/2 & 0 \end{pmatrix}$$ Let $\pi = (\pi_1, \pi_2, \pi_3)$ be a stationary distribution of the Markov chain and d(1)denote the period of state 1. Which of the following statements are correct? - 1. d(1) = 1 - 2. d(1) = 2 - 3. $\pi_1 = 1/2$ - 4. $\pi_1 = 1/3$ - 109. दो यादृच्छिक चरों X व Y के लिए $X \ge 0, Y \ge 0, E(X) = 3, V(X) = 9,$ $E(Y) = 2 \, \overline{a} \, V(Y) = 4$ दिया गया है। निम्नलिखित में से क्या सत्य है ? 1. $0 \le Cov(X,Y) \le 4$ - 2. $E(XY) \leq 6$ - $3. \ V(X+Y) \leq 25$ - 4. $E(X+Y)^2 > 25$ 109. Let X and Y be two random variables satisfying $X \ge 0$, $Y \ge 0$, E(X) = 3, V(X) = 9, E(Y) = 2and V(Y) = 4. Which of the following statements are correct? - 1. $0 \le Cov(X,Y) \le 4$ - 2. $E(XY) \leq 6$ - $3. \quad V(X+Y) \le 25$ - 4.
$E(X+Y)^2 \ge 25$ - 110. दो यादुच्छिक चरों X व Y का संयुक्त प्रायिकता धनत्व फलन निम्न रूप से परिभाषित है $$f(x,y) = \begin{cases} \frac{1}{\pi} & \text{if } 0 \le x^2 + y^2 \le 1\\ 0 & \text{otherwise.} \end{cases}$$ निम्नलिखित में से क्या सत्य है ? - 1. X व Y स्वतंत्र हैं। - 2. P(X > 0) = 1/2 - 3. E(Y) = 0 - $4. \quad Cov(X,Y) = 0$ - 110. Let X and Y be two random variables with joint probability density function $$f(x,y) = \begin{cases} \frac{1}{\pi} & \text{if } 0 \le x^2 + y^2 \le 1\\ 0 & \text{otherwise.} \end{cases}$$ Which of the following statements are correct? - 1. X and Y are independent - 2. P(X > 0) = 1/2 - 3. E(Y) = 0 - $4. \quad Cov(X,Y) = 0$ - अन्तराल [0, 1] में 20 प्रेक्षणों को x₁, x₂, ..., x₂₀ से निरूपित किया जाता है। यदि 🗓 व 着 क्रमशः इन प्रेक्षणों का माध्य व माध्यिका हों, तथा $$s^2 = \frac{1}{n} \Sigma (x_l - \bar{x})^2$$ हो तो - यदि 15 प्रेक्षण 0.3 से छोटे हों तो प्रें अधिक से अधिक 0.5 हो सकता है। - 2. 10 प्रेक्षण 1 व शेष प्रेक्षण o होने पर s^2 महत्तम होगा। - 3. यदि एक को छोड़कर अन्य सभी प्रेक्षण 0.5 से छोटे हों तो क्रें का मान क्रें से कम नहीं हो सकता। - $4. \quad s^2 \leq \bar{x}(1-\bar{x})$ - 111. Let $x_1, x_2, ..., x_{20}$ be 20 observations in the interval [0, 1]. Let \bar{x} and \bar{x} be the mean and the median of these observations, and let $s^2 = \frac{1}{n} \Sigma (x_i - \bar{x})^2$. - 1. If 15 observations are smaller than 0.3, then \bar{x} cannot exceed 0.5 - 2. s2 will be maximum if 10 of these observations are 1 and the rest are 0 - 3. If all observations except one are smaller than 0.5, then \vec{x} cannot be smaller than x - $4. \quad s^2 \leq \bar{x}(1-\bar{x})$ - 112.एकल रेखा कतार M/M/1 जिसकी आगमन दर λ व सेवा दर μ है, जबकि λ < μ है पर विचार कीजिए। निम्नलिखित में से क्या सत्य है ? - अनंत अवसरों पर प्रायिकता 1 के साथ कतार की लंबाई शून्य होती है। - 2. अधिक से अधिक परिमित अवसरों पर प्रायिकता 1 के साथ कतार की लंबाई शून्य होती है। - 3. कतार की स्थिर अवस्था संभव है। - 4. यदि t समय पर निकाय में ग्राहकों की संख्या को L_t से निरूपित किया जाए तो $\lim_{t\to\infty} P(L_t>0)= rac{\lambda}{\mu}$ होगा। - 112. Consider a single server M/M/1 queue with arrival rate λ and service rate μ . Further assume that $\lambda < \mu$. Then, which of the following statements are true? - 1. Queue length becomes 0 in infinitely many time intervals with probability 1 - 2. Queue length becomes 0 in at most finitely many time intervals with probability 1 - 3. Steady state exists for the queue - 4. $\lim_{t\to\infty} P(L_t > 0) = \frac{\lambda}{\mu}$, where L_t is the number of customers in the system at time t - 113. हम F, h व m से क्रमशः $[0,\infty)$ में परिभाषित जीवनकाल बंटन फलन (lifetime distribution function), क्षय फलन (hazard function) व औसत शेष जीवनकाल फलन (mean residual lifetime function) को निरूपित करते हैं। यदि F सर्वथा सतत (absolutely continuous) हो तो निम्न में से क्या सत्य है ? - $1. \quad \int_0^\infty h(t)dt = 1$ - 2. $m(t) = \frac{\int_{t}^{\infty} (1 F(u)) du}{1 F(t)}$, for t > 0 - 3. यदि जीवनकाल बंटन फलन माध्य λ > 0 वाला चरधातांकी फलन हो तो t के साथ m(t) का मान हमेशा बढेगा। - 4. यदि जीवनकाल बंटन फलन माध्य $\lambda>0$ वाला वरधातांकी फलन हो तो सभी t > 0के लिए h(t)m(t) = 1 होगा। - 113. Let F, h and m be the lifetime distribution function, the hazard function and the mean residual lifetime function respectively, defined on [0,∞). Assume that F is absolutely continuous. Which of the following statements are true? - $1. \int_0^\infty h(t)dt = 1$ - 2. $m(t) = \frac{\int_{t}^{\infty} (1 F(u)) du}{1 F(t)}$, for t > 0 - 3. m(t) is strictly increasing in t if the lifetime distribution is exponential with mean $\lambda > 0$ - 4. h(t)m(t) = 1 for all t > 0 if the lifetime distribution is exponential with mean $\lambda > 0$ - 114. यदि आंकड़ों के एक समुच्चय का माध्य 2.5 व मानक विचलन 0.5 है तो - माध्यिका 2.5 से बड़ी होनी चाहिए। - 2. माध्यका 2.5 से छोटी होनी चाहिए। - 3. माध्यका 3 से कम होनी चाहिए। - 4. माध्यका 2 से बड़ी होनी चाहिए। - 114. In a data set with mean 2.5 and standard deviation 0.5. - 1. the median must be bigger than 2.5 - 2. the median must be smaller than 2.5 - 3. the median must be smaller than 3 - the median must be bigger than 2 - 115. एक साख्यिकीविद ने अलग-अलग ऊँचाई वाले 4 लड़कों में से सप्रतिस्थापन (with replacement) 2 लड़कों का सरल यादुच्छिक प्रतिदर्श (simple random sample) लिया। इस प्रतिदर्श की औसत ऊँचाई को 🕅 से निरूपित किया गया। अब दूसरे सांख्यिकीविद ने इन्हीं 4 लड़कों में से 2 लड़कों का अप्रतिस्थापन से सरल यादृष्टिक प्रतिदर्श लिया और इस प्रतिदर्श की औसत ऊँचाई को \bar{x}_2 से निरूपित किया। निम्न में से क्या सत्य है ? - 1. $(\bar{x}_1 + \bar{x}_2)/2$ का प्रसरण (variance) $(2\bar{x}_1 + 3\bar{x}_2)/5$ के प्रसरण से अधिक है। - 2. $(\bar{x}_1 + 2\bar{x}_2)/3$ का प्रसरण $(2\bar{x}_1 + 3\bar{x}_2)/5$ के प्रसरण से अधिक है। - 3. $(\bar{x}_1 + \bar{x}_2)/2$ का प्रसरण $(2\bar{x}_1 + 3\bar{x}_2)/5$ के प्रसरण से कम है। - 4. $(\bar{x}_1 + 2\bar{x}_2)/3$ का प्रसरण $(2\bar{x}_1 + 3\bar{x}_2)/5$ के प्रसरण से कम है। - 115. A statistician has drawn a simple random sample of size 2 with replacement from 4 boys with distinct heights. Let \bar{x}_1 be the sample mean of their heights. Then, another statistician has drawn a simple random sample of size 2 without replacement from those 4 boys. Let \bar{x}_2 be the sample mean of their heights. Which of the following statements are correct? - 1. $(\bar{x}_1 + \bar{x}_2)/2$ has larger variance than that of $(2\bar{x}_1 + 3\bar{x}_2)/5$ - 2. $(\bar{x}_1 + 2\bar{x}_2)/3$ has larger variance than that of $(2\bar{x}_1 + 3\bar{x}_2)/5$ - 3. $(\bar{x}_1 + \bar{x}_2)/2$ has smaller variance than that of $(2\bar{x}_1 + 3\bar{x}_2)/5$ - 4. $(\bar{x}_1 + 2\bar{x}_2)/3$ has smaller variance than that of $(2\bar{x}_1 + 3\bar{x}_2)/5$ - 116. द्विवर्ग वर्गीकरण प्रश्न (two-class classification problem) पर विचार कीजिए, जबकि दो प्रतिस्पधी वर्गों के घनत्व निम्न प्रकार से परिभाषित हैं $$f_1(x) = \begin{cases} 1 & \text{if } 0 \le x \le 1 \\ 0 & \text{otherwise} \end{cases}$$ $f_2(x) = \begin{cases} 2x & \text{if } 0 \le x \le 1\\ 0 & \text{otherwise} \end{cases}$ इन वर्गों की पूर्व प्रायिकताओं को क्रमशः π_1 व π_2 से निरूपित कीजिए। एक वर्गीकर्ता (classifier) δ, जो एक प्रेक्षण 🗴 को प्रथम वर्ग में वर्गीकृत करता है यदि x < 1/2 हो, व द्वितीय वर्ग में वर्गीकृत करता है यदि $x \ge 1/2$ हो, के संबंध में क्या सत्य है ? - 1. यदि $\pi_1=\pi_2$ हो तो δ एक बेस वर्गीकर्ता (Bayes classifier) \$1 - 2. यदि $\pi_1 > \pi_2$ हो तो δ एक बेस वर्गीकर्ता है। - 3. यदि $\pi_1 < \pi_2$ हो तो δ एक बेस वर्गीकर्ता है। - 4. यदि $\pi_1=\pi_2$ हो तो δ द्वारा गलत वर्गीकरण की औसत प्रायिकता 👼 है। - 116. Consider a two-class classification problem, where the densities of the two competing classes are given by $$f_1(x) = \begin{cases} 1 & \text{if } 0 \le x \le 1 \\ 0 & \text{otherwise} \end{cases}$$ $$f_2(x) = \begin{cases} 2x & \text{if } 0 \le x \le 1\\ 0 & \text{otherwise} \end{cases}$$ Let π_1 and π_2 be the prior probabilities of these two classes. Now consider a classifier δ , which classifies an observation x to class 1 if x < 1/2 and to class 2 if $x \ge 1/2$. - 1. If $\pi_1 = \pi_2$, then δ is the Bayes classifier - 2. If $\pi_1 > \pi_2$, then δ is the Bayes classifier - 3. If $\pi_1 < \pi_2$, then δ is the Bayes classifier - 4. If $\pi_1 = \pi_2$, then the average probability of misclassification for δ is 3/8. - 117. बंदन $N(\mu, \sigma^2)$ का पालन करने वाले स्वरूपी खतन्त्र बंदित याद्धिक घर $X_1, X_2, ..., X_n$ दिए गए हैं, जबिक μ व σ^2 दोनों अज्ञात प्राचल हैं। σ^2 का विश्वास्थता अन्तराल $I_{a,b} = \left[\frac{\sum (X_i - \bar{X})^2}{b}, \frac{\sum (X_i - \bar{X})^2}{a}\right]$, जबिक b > a > 0, दिया गया है। यदि G_n स्वातंत्र्य कोटि n के एक χ^2 यादृष्टिक चर के संचयी बंटन फलन (cumulative distribution function) को निरूपित करता हो, तो निम्नलिखित में से क्या सत्य है ? - I_{a,b}, जबिके ab = 1 हो, प्रकार का 95% विश्वास्थता अन्तराल संगव है। - 2. मार्ने की $G_{n-1}(a) = 1 G_{n-1}(b) = 0.025$ हो तो यह सबसे छोटा 95% विश्वास्यता अंतराल है। - यदि यह सबसे छोटा 95% विश्वास्थता अन्तराल हो तो α a b प्रतिबंध $b - a = (n - 3) \log \frac{b}{a}$ को संतुष्ट करेंगे। - 4. यदि $G_{n-1}(b) G_{n-1}(a) = 0.95$ हो तो $I_{a,b}$ प्रकार के 95% विश्वास्थता अन्तराल की प्रत्याशित लंबाई $(n-1)\left(\frac{1}{a} \frac{1}{b}\right)\sigma^2$ होगी। - 117. Let $X_1, X_2, ..., X_n$ be i.i.d. $N(\mu, \sigma^2)$ variables, where μ and σ^2 both are unknown parameters. Consider a confidence interval for σ^2 , which is of the form $$l_{a,b} = \left[\frac{\sum (X_i - \bar{X})^2}{b}, \frac{\sum (X_i - \bar{X})^2}{a}\right]$$, where $b > a > 0$. Let G_n be the cumulative distribution function of a chi-square random variable with n degrees of freedom. Which of the following statements are true? - It is possible to find a 95% confidence interval of the form l_{a,b}, where ab = 1. - 2. If $G_{n-1}(a) = 1 G_{n-1}(b) = 0.025$, then it is the shortest 95% confidence interval. - 3. If it is the shortest 95% confidence interval, then a and b must satisfy the condition $b a = (n 3) \log \frac{b}{a}$ - 4. If $G_{n-1}(b) G_{n-1}(a) = 0.95$, then the expected length of a 95% confidence interval of the form $$l_{a,b}$$ is $(n-1)\left(\frac{1}{a}-\frac{1}{b}\right)\sigma^2$ 118. रैखिक निवर्श $$Y_1 = \beta_1 x_{11} + \beta_2 x_{12} + \beta_3 x_{13} + \varepsilon_1$$ $$Y_2 = \beta_1 x_{21} + \beta_2 x_{22} + \beta_3 x_{23} + \varepsilon_2$$ $$Y_3 = \beta_1 x_{31} + \beta_2 x_{32} + \beta_3 x_{33} + \varepsilon_3,$$ में $\varepsilon_1, \varepsilon_2$, ε_3 $N(0, \sigma^2)$ का पालन करने वाले स्वरूपी स्वतंत्र बंटन (i.i.d.) हैं तथा $Det \begin{bmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{bmatrix} \neq 0$ है। मान लीजिए कि $(\beta_1,\beta_2,\beta_3)$ का लघुतम वर्ग आंकलन (least squares estimate) $(\hat{\beta}_1,\hat{\beta}_2,\hat{\beta}_3)$ है और $\ell_1,\ell_2,\ell_3\in\mathbb{R}$ दिये गए हैं। - ।. $(\hat{\beta}_1, \hat{\beta}_2,
\hat{\beta}_3)$ अहितीय (unique) है। - $\Sigma_{i=1}^3 \ell_i eta_i$ का श्रेष्ठतम रैखिक अपूर्वाग्रहित आंकलन (BLUE) $\Sigma_{i=1}^3 \ell_i eta_i$ है। - 3. $\sum_{i=1}^{3} \ell_i \beta_i$ का समस्त्रपीय लघुत्तम प्रसरण अपूर्वाग्रहित आकलन (UMVUE) $\sum_{i=1}^{3} \ell_i \hat{\beta}_i$ - 4. $\sum_{i=1}^{3} \ell_i \beta_i$ का $\sum_{i=1}^{3} \ell_i \hat{\beta_i}$ श्रेष्ठतम रैखिक अपूर्वाग्रहित आंकलन BLUE है पर समरूपी लघुतम प्रसरण अपूर्वाग्रहित आंकलन (UMVUE) नहीं है। - 118. In the linear model: $$Y_1 = \beta_1 x_{11} + \beta_2 x_{12} + \beta_3 x_{13} + \varepsilon_1$$ $$Y_2 = \beta_1 x_{21} + \beta_2 x_{22} + \beta_3 x_{23} + \varepsilon_2$$ $$Y_3 = \beta_1 x_{31} + \beta_2 x_{32} + \beta_3 x_{33} + \varepsilon_3,$$ where $\varepsilon_1, \varepsilon_2$ and ε_3 are i.i.d. $N(0, \sigma^2)$ and $$Det\begin{bmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{bmatrix} \neq 0.$$ Let $(\hat{\beta}_1, \hat{\beta}_2, \hat{\beta}_3)$ be the least squares estimate of $(\beta_1, \beta_2, \beta_3)$. Let $\ell_1, \ell_2, \ell_3 \in \mathbb{R}$. 1. $(\hat{\beta}_1, \hat{\beta}_2, \hat{\beta}_3)$ is unique 2. $\sum_{i=1}^{3} \ell_i \hat{\beta}_i$ is the best linear unbiased estimate (BLUE) of $\sum_{i=1}^{3} \ell_i \beta_i$ - 3. $\sum_{i=1}^{3} \ell_i \hat{\beta}_i$ is the uniformly minimum variance unbiased estimate (UMVUE) of $\sum_{i=1}^{3} \ell_i \beta_i$ - ∑_{i=1}³ ℓ_iβ̂_i is BLUE but not UMVUE of ∑_{i=1}³ ℓ_iβ_i - 119. हम प्रेक्षित करते हैं कि X ~ Binomial (n, p), जबिक 0 0 प्वासों (Poisson) बंटन है तो निम्नलिखित में से क्या सत्य है ? - π का पश्च बंटन (posterior distribution) भी प्यासों है, परन्तु उसका माध्य λ नहीं है। - 2. X = 0 होने पर n का पश्च बंटन $\lambda (1 p)$ माध्य का प्यासों बंटन है। - p = 1/2 होने पर n के बेस आंकलन (Bayes estimate) का पूर्वाग्रह (bias) (λ - n)/2 है। - गः के बेस आंकलन का प्रसरण (variance) अपूर्वाग्रहित (unbiased) आंकलन X/p के प्रसरण से अधिक है। - 119. We observe X ~ Binomial (n, p), where 0 an unknown parameter. Note that when n = 0, X is degenerate at 0. Suppose that n has a prior distribution which is Poisson with a known mean λ > 0. Which of the following statements are correct? - The posterior distribution of n is also Poisson but with a mean different from λ - 2. If X = 0, the posterior distribution of n is Poisson with mean $\lambda (1 p)$ - 3. The Bayes estimate of n has bias $(\lambda n)/2$ when p = 1/2 - The Bayes estimate of n has larger variance than the variance of the unbiased estimate Xp - 120. एक द्विप्रतिदर्श अवस्थिति प्रश्न (two-sample location problem) पर विचार कीजिए जिसमें प्रथम व द्वितीय समस्टि (population) से क्रमशः 6 व 8 प्रेक्षण किए जाने हैं। - i-वें समिट का बंटन $F(x; \theta_i) = F(x - \theta_i); i = 1, 2 \, \text{है, जबकि } F$ माध्यका 0 का एक सतत बंदन फलन है। संयुक्त प्रतिदर्श में द्वितीय प्रतिदर्श के क्रमों (ranks) का योगफल T से निरूपित किया जाता है। यदि सभी परीक्षण स्वतंत्र हों तो H_0 : $\theta_1=\theta_2$ का H_1 : $\theta_1>\theta_2$ के सापेक्ष परीक्षण करने के संबंध में क्या सत्य हैं। - H₁ के अन्तर्गत T पर बंटन का कोई प्रभाव नहीं है। - 2. यदि T छोटा हो तो H_0 को अरदीकार करना उचित है। - 3. T का प्रेक्षित मान 85 नहीं हो सकता। - H₀ के अन्तर्गत E(T) = 60 होगा। - 120. Consider a two-sample location problem with 6 and 8 observations from the first and second populations, respectively. Suppose that the distribution of the ith population is F(x; θ_i) = F(x θ_i); i = 1, 2, where F is a continuous distribution function with the median at 0. Define T as the sum of the ranks of the second sample in the combined sample. For the problem of testing H₀: θ₁ = θ₂ against H₁: θ₁ > θ₂, which of the following statements are true when all observations are independent? - T is distribution free under H₁ - It is appropriate to reject H₀ when T is small - 3. Observed value of T cannot be 85 - 4. E(T) = 60 under H_0 FOR ROUGH WORK 4-C-H S/11 RISE/18-4CH-5 # JOINT CSIR-UGC-JRF/NET JUNE, 2018 ANSWER KEY SUBJECT : **MATHEMATICAL SCIENCES** | BOOKLET CODE : A - (BILINGUAL AND ENGLISH) | | | | | | | | |--|-----|--|-------|-------|--|-------|---------| | Q.No. | Key | | Q.No. | Key | | Q.No. | Key | | 1 | 2 | | 41 | 3 | | 81 | 1,2,3,4 | | 2 | 1 | | 42 | 4 | | 82 | 1,3 | | 3 | 2 | | 43 | 4 | | 83 | 1 | | 4 | 3 | | 44 | 3 | | 84 | 2 | | 5 | 4 | | 45 | 1 | | 85 | 2,3 | | 6 | 3 | | 46 | 1 | | 86 | 1 | | 7 | 2 | | 47 | 2 | | 87 | 1,3 | | 8 | 4 | | 48 | 2 | | 88 | 1,4 | | 9 | 2 | | 49 | 3 | | 89 | 1,3,4 | | 10 | 1 | | 50 | 3 | | 90 | 1,3 | | 11 | 2 | | 51 | 2 | | 91 | 1,3 | | 12 | 4 | | 52 | 2 | | 92 | 1 | | 13 | 3 | | 53 | 4 | | 93 | 1,2,3 | | 14 | 3 | | 54 | 4 | | 94 | 1,2,3,4 | | 15 | 4 | | 55 | 3 | | 95 | 3 | | 16 | 2 | | 56 | 4 | | 96 | 2 | | 17 | 4 | | 57 | 2 | | 97 | 1,3,4 | | 18 | 4 | | 58 | 4 | | 98 | 1 | | 19 | 3 | | 59 | 3 | | 99 | 1 | | 20 | 3 | | 60 | 3 | | 100 | 1,4 | | 21 | 4 | | 61 | 1,2,4 | | 101 | 1 | | 22 | 2 | | 62 | 1,2 | | 102 | 1,2 | | 23 | 1 | | 63 | 1,2 | | 103 | 2,3,4 | | 24 | 2 | | 64 | 1,4 | | 104 | 3,4 | | 25 | 3 | | 65 | 1,2 | | 105 | 1,4 | | 26 | 3 | | 66 | 4 | | 106 | 2,4 | | 27 | 4 | | 67 | 1,3,4 | | 107 | 1,2,3 | | 28 | 3 | | 68 | 2,4 | | 108 | 1,3,4 | | 29 | 4 | | 69 | 2 | | 109 | 1,2,3,4 | | 30 | 3 | | 70 | 4 | | 110 | 3,4 | | 31 | 2 | | 71 | 3,4 | | 111 | 2,3,4 | | 32 | 3 | | 72 | 1,4 | | 112 | 2,3 | | 33 | 3 | | 73 | 4 | | 113 | 1,2,3 | | 34 | 2 | | 74 | 1,4 | | 114 | 1,3,4 | | 35 | 1 | | 75 | 2,3 | | 115 | 1,4 | | 36 | 4 | | 76 | 3,4 | | 116 | 1,2 | | 37 | 3 | | 77 | 4 | | 117 | 3,4 | | 38 | 4 | | 78 | 1 | | 118 | 2,4 | | 39 | 3 | | 79 | 1,3 | | 119 | 1,3,4 | | 40 | 2 | | 80 | 1,2,4 | | 120 | 1,2,4 | # JOINT CSIR-UGC-JRF/NET JUNE, 2018 ANSWER KEY SUBJECT : MATHEMATICAL SCIENCES | BOOKLET CODE : B - (BILINGUAL AND ENGLISH) | | | | | | | | |--|-----|--|-------|-------|---|-------|---------| | Q.No. | Key | | Q.No. | Key | | Q.No. | Key | | 1 | 4 | | 41 | 4 | | 81 | 1 | | 2 | 2 | | 42 | 3 | 1 | 82 | 1,3 | | 3 | 2 | | 43 | 1 | 1 | 83 | 1,4 | | 4 | 2 | | 44 | 1 | 1 | 84 | 1,2,3,4 | | 5 | 4 | | 45 | 2 | 1 | 85 | 1,3 | | 6 | 1 | | 46 | 2 | 1 | 86 | 1 | | 7 | 4 | | 47 | 3 | 1 | 87 | 2 | | 8 | 3 | | 48 | 4 | | 88 | 2,3 | | 9 | 4 | | 49 | 2 | | 89 | 1,3 | | 10 | 3 | | 50 | 2 | | 90 | 1,2,4 | | 11 | 1 | | 51 | 4 | | 91 | 1 | | 12 | 3 | | 52 | 4 | | 92 | 1,2 | | 13 | 4 | | 53 | 3 | | 93 | 1 | | 14 | 3 | | 54 | 4 | | 94 | 1 | | 15 | 2 | | 55 | 2 | 1 | 95 | 1,4 | | 16 | 2 | | 56 | 4 | | 96 | 1,2,3 | | 17 | 4 | | 57 | 3 | | 97 | 1,2,3,4 | | 18 | 3 | | 58 | 3 | | 98 | 3 | | 19 | 3 | | 59 | 3 | | 99 | 2 | | 20 | 2 | | 60 | 3 | | 100 | 1,3,4 | | 21 | 1 | | 61 | 1,2 | | 101 | 1 | | 22 | 2 | | 62 | 1,4 | | 102 | 1,3 | | 23 | 3 | | 63 | 1,2 | | 103 | 1,3,4 | | 24 | 3 | | 64 | 4 | | 104 | 1,2,4 | | 25 | 4 | | 65 | 1,3,4 | | 105 | 1,2 | | 26 | 3 | | 66 | 2,4 | | 106 | 3,4 | | 27 | 4 | | 67 | 2 | | 107 | 2,4 | | 28 | 3 | | 68 | 4 | | 108 | 1,4 | | 29 | 2 | | 69 | 3,4 | | 109 | 2,4 | | 30 | 3 | | 70 | 1,4 | | 110 | 1,2,3 | | 31 | 4 | | 71 | 4 | | 111 | 1,3,4 | | 32 | 2 | | 72 | 1,4 | | 112 | 1,2,3,4 | | 33 | 1 | | 73 | 2,3 | | 113 | 3,4 | | 34 | 4 | | 74 | 3,4 | _ | 114 | 2,3,4 | | 35 | 3 | | 75 | 4 | | 115 | 2,3 | | 36 | 4 | | 76 | 1 | | 116 | 1,2,3 | | 37 | 3 | | 77 | 1,2,4 | | 117 | 1,3,4 | | 38 | 2 | | 78 | 1,2 | | 118 | 1,4 | | 39 | 3 | | 79 | 1,3,4 | _ | 119 | 2,3,4 | | 40 | 2 | | 80 | 1,3 | | 120 | 3,4 | # JOINT CSIR-UGC-JRF/NET JUNE, 2018 ANSWER KEY SUBJECT : **MATHEMATICAL SCIENCES** | BOOKLET CODE : C - (BILINGUAL AND ENGLISH) | | | | | | | | |--|-----|--|-------|-------|---|-------|---------| | Q.No. | Key | | Q.No. | Key | | Q.No. | Key | | 1 | 2 | | 41 | 2 | | 81 | 1,3 | | 2 | 2 | | 42 | 2 | | 82 | 1,2,3,4 | | 3 | 3 | | 43 | 3 | | 83 | 1,2,4 | | 4 | 2 | | 44 | 4 | | 84 | 1,3 | | 5 | 4 | | 45 | 4 | | 85 | 1,3 | | 6 | 3 | | 46 | 3 | | 86 | 1,3,4 | | 7 | 1 | | 47 | 1 | | 87 | 1,4 | | 8 | 1 | | 48 | 1 | | 88 | 1,3 | | 9 | 3 | | 49 | 3 | | 89 | 1 | | 10 | 3 | | 50 | 3 | | 90 | 2,3 | | 11 | 4 | | 51 | 3 | | 91 | 2 | | 12 | 3 | | 52 | 3 | | 92 | 3 | | 13 | 2 | | 53 | 2 | | 93 | 1,2,3,4 | | 14 | 4 | | 54 | 2 | | 94 | 1,2,3 | | 15 | 2 | | 55 | 4 | | 95 | 1 | | 16 | 4 | | 56 | 4 | | 96 | 1,3 | | 17 | 3 | | 57 | 3 | | 97 | 1,2 | | 18 | 2 | | 58 | 4 | | 98 | 1 | | 19 | 4 | | 59 | 2 | | 99 | 1,4 | | 20 | 4 | | 60 | 4 | | 100 | 1 | | 21 | 2 | | 61 | 4 | | 101 | 1 | | 22 | 3 | | 62 | 1 | | 102 | 1,3,4 | | 23 | 4 | | 63 | 1,2,4 | | 103 | 3,4 | | 24 | 2 | | 64 | 1,2 | | 104 | 1,2,3,4 | | 25 | 1 | | 65 | 1,2 | | 105 | 1,3,4 | | 26 | 2 | | 66 | 1,4 | | 106 | 1,2,3 | | 27 | 3 | | 67 | 1,2 | | 107 | 2,4 | | 28 | 3 | | 68 | 4 | | 108 | 1,4 | | 29 | 4 | | 69 | 1,3,4 | | 109 | 3,4 | | 30 | 3 | | 70 | 2,4 | | 110 | 2,3,4 | | 31 | 4 | | 71 | 2 | | 111 | 1,2,4 | | 32 | 3 | | 72 | 4 | | 112 | 1,3,4 | | 33 | 3 | | 73 | 3,4 | | 113 | 2,4 | | 34 | 2 | | 74 | 1,4 |] | 114 | 3,4 | | 35 | 3 | | 75 | 4 |] | 115 | 1,2 | | 36 | 2 | | 76 | 1,4 | | 116 | 1,4 | | 37 | 1 | | 77 | 2,3 | | 117 | 1,3,4 | | 38 | 4 | | 78 | 3,4 | | 118 | 1,2,3 | | 39 | 3 | | 79 | 2 |] | 119 | 2,3 | | 40 | 4 | | 80 | 1 | | 120 | 2,3,4 |