<u> Harry H</u>

K22P 3319

IV Semester M.Sc. Degree (C.B.S.S. - Reg./Supple./Imp.) **Examination, April 2022** (2018 Admission Onwards) **MATHEMATICS MAT4C15: Operator Theory**

Time: 3 Hours

Max. Marks: 80

Answer any four questions from this Part. Each question carries 4 marks.

1. Let X be a normed space and $A \in BL(X)$. Prove that A is invertible if and only if A is bounded below and surjective.

PART-A

- 2. Let X and Y be normed spaces and F₁ and F₂ \in BL(X, Y) and k \in K. Show that $(F_1 + F_2)' = F_1' + F_2', (kF_1)' = kF_1'.$
- 3. Let X and Y be Banach spaces, $F: X \rightarrow Y$ is a compact map and R(F) is closed in Y. Prove that F is of finite rank.
- 4. If X is an infinite dimensional normed space and $A \in CL(X)$. Prove that $0 \in \sigma_{\rm a}(A)$.
- 5. Let H be a Hilbert space. If each (A_n) is self adjoint operator in BL(H) and $||A_n - A|| \rightarrow 0$, then prove that A is self adjoint.
- 6. Prove that the adjoint of Hilbert Schmidt operator on a separable Hilbert space is Hilbert Schmidt operator. $(4 \times 4 = 16)$

$PART - B$

Answer any four questions from this Part without omitting any Unit. Each question carries 16 marks.

$UNIT-I$

- 7. a) Let X be a normed space and $A \in BL(X)$ be of finite rank. Show that $\sigma_{\rm A}(A) = \sigma_{\rm A}(A) = \sigma(A)$.
	- b) Let X be a Banach space over K and $A \in BL(X)$. Show that $\sigma(A)$ is a compact subset of K. <u>200 Gegoogla</u>
- 8. a) Let X be a normed space and X' is separable, prove that X is separable.
	- b) Let $1 \le p \le \infty$ and $\frac{1}{p} + \frac{1}{q} = 1$. Show that the dual of Kⁿ with the norm $|| \ ||_p$ is linearly isomorphic to K^n with the norm $|| \cdot ||_{\alpha}$.
- 9. a) Let X be a normed space and (x_0) be a sequence in X. Then prove that (x_0) is weak convergent in X if and only if
	- i) (x_n) is a bounded sequence in X and
	- ii) there is some $x \in X$ such that $x'(x_n) \to x'(x)$ for every x' in some subset of X' whose span is dense in X'.
	- b) Let (x') be a sequence in a normed space X. if
		- i) (x') is bounded and
		- ii) $(x'_n(x))$ is a Cauchy sequence in K for each x in a subset of X whose span UR UNIV is dense in X.

Then, prove that (x'_n) is weak* convergent in X'. Is the converse true ? Justify your answer.

$UNIT - II$

- 10. a) Let X be a reflexive normed space. Prove that every closed subspace of X is reflexive.
	- b) Examine the reflexivity of $L^p([a, b])$, $1 \le p \le \infty$.
- 11. a) When a normed space X is said to be uniformly convex?
	- b) Let X be a Banach space which is uniformly convex in some equivalent norm. Then prove that X is reflexive. Is the converse true ? Justify your answer.

<u> I III III III III III III III II III III</u>

 $(4 \times 16 = 64)$

- 12. Let X be a normed space, Y be a Banach space and $F \in BL(X, Y)$, then prove that
	- a) $CL(X, Y)$ is a closed subspace of $BL(X, Y)$.
	- b) $F \in CL(X, Y)$ if and only if $F' \in CL(Y', X')$.

$UNIT - III$

- 13. Let H be a Hilbert space and $A \in BL(H)$. Then prove the following,
	- a) A is injective if and only if $R(A^*)$ is dense in H.
	- b) The closure of R(A) equals $Z(A_3^*)^{\perp}$ and \otimes
	- c) $R(A) = H$ if and only if A^* is bounded below.
- 14. Let H be a Hilbert space and $A \in BL(H)$.
	- a) If A is normal, x_1 and x_2 are eigenvectors of A corresponding to distinct eigenvalues, then prove that $x_1 \perp x_2$.
	- b) Prove that every spectral value of A is an approximate eigenvalue of A.
	- c) Define the numerical range of A and show that it is bounded, but not closed.
- 15. Let A be compact operator on non-zero Hilbert space.
	- a) Prove that non-zero approximate eigenvalue of A is an eigenvalue of A and the corresponding eigenspace is finite dimensional.
	- b) If A is self adjoint, then prove that $||A||$ or $-||A||$ is an eigenvalue of A.

UR LINI

\blacksquare K23P 0203

Reg. No. :

Name :

IV Semester M.Sc. Degree (CBSS – Reg./Supple./Imp.) Examination, April 2023 (2019 Admission Onwards) MATHEMATICS MAT4C15 : Operator Theory (2019 Admission Onwards)

MATHEMATICS

MAT4C15 : Operator Theory

The : 3 Hours

PART – A

Answer four questions from this Part. Each question carries 4 marks

1. Let X be a Banach space over K and let A ∈ BL(X). Prove th (2019 Admission Onwards)

MATHEMATICS

MATAC15 : Operator Theory

FS

Max. Marks

PART – A

questions from this Part. Each question carries 4 marks.

Banach space over K and let A \in BL(X). Prove that $\sigma(A)$ is a compac

Answer four questions from this Part. Each question carries 4 marks.

- 1. Let X be a Banach space over K and let $A \in BL(X)$. Prove that $\sigma(A)$ is a compact subset of K.
- in a normed space X and $k_{n} \rightarrow k$ in K, prove that
- is separable.
- 4. Let X and Y be a normed spaces and $F : X \rightarrow Y$ be linear. Prove that F is a compact map if and only if for every bounded sequence $(\mathsf{x}_{_\mathrm{n}})$ in X, (F $(\mathsf{x}_{_\mathrm{n}})$) has a subsequence which converges in Y.
- 5. Let H be a Hilbert space and $A \in BL(H)$. Prove that A is normal if and only if $|| A (x) || = || A^{*}(x) ||$ for all $x \in H$.
- 6. Let $A \in BL(H)$. If A is compact, prove that A^{*} is also compact.

K23P 0203 -2- *K23P0203*

PART – B

Answer four questions from this Part without omitting any Unit. Each question carries 16 marks.

Unit – I

- 7. Let X be a nonzero Banach space over C and $A \in BL(X)$. Prove that
	- a) $\sigma(A)$ is non empty.
	- n=1,2, ... $\qquad \qquad \qquad \qquad$ $\qquad \qquad$ $\qquad \qquad$ $\qquad \qquad$ \qquad $\overline{\mathsf{n}}$ – $\lim_{n \to \infty} \|\Delta^n\|$ $\lim_{n\to\infty}$ $\|A^n\|_{\infty}$, as expanded $\|A^n\|_{\infty}$
- **EXAMPLE 12.**
 EXAMPLE 12.
 EXAMPLE 12.
 EXAMPLE 17. Let X be a nonzero Banach space over C and A \in **BL (X). Prove that

a)** $\sigma(A)$ **is non empty.

b)** $r_c(A) = \inf_{n=1,2, \dots} ||A^n||^{\frac{1}{n}} = \lim_{n \to \infty} ||A^n||^{\frac{1}{n}}$ **.

B. a) Le DOS**

PART – B
 CONTAINMORT CONTAINS TO PART – B
 CONTAINMORT UNITED SPACE CONTAINS A
 CONTAINMORT UNITED SPACE CONTAINS AND SURFER (A) is non empty.

(A) = inf $||A^*||^{\frac{1}{n}} = \lim_{n \to \infty} ||A^*||^{\frac{1}{n}}$. The space an PART – B

estions from this Part without omitting any Unit. Each question

3.
 Unit – I

encore Banach space over C and A \in BL (X). Prove that

on empty.

If $||A^{\circ}||^{\frac{1}{n}} = \lim_{n \to \infty} ||A^n||^{\frac{1}{n}}$

a a normed space 8. a) Let X be a normed space and $A \in BL(X)$ be of finite rank. Prove that $_{e}(A) = \sigma_{a}(A) = \sigma(A).$ 7. Let X be a nonzero Banach space over C and A \in BL (X). Prove that

a) $\sigma(A)$ is non empty.

b) $r_a(A) = \inf_{n=1,2,...} ||A^n||^{\frac{1}{n}} = \lim_{n \to \infty} ||A^n||^{\frac{1}{n}}$

8. a) Let X be a normed space and $A \in BL(X)$ be of finite rank. Prov
	- b) Let X, Y and Z be normed spaces. Let $F \in BL(X, Y)$ and $G \in BL(Y, Z)$. Prove that
		- i) $(GF)' = F'G'$
		- ii) $||F'|| = ||F|| = ||F'||$ and
- iii) F'' $J_x = J_yF$.
- 9. a) Let X be a normed space. If X' is separable, prove that X is separable.
	- in l^1 if and only if $x_n \to x$ in l^1 . . And the set of \sim

Unit – $||$

- sequence in X has a weak convergent subsequence.
- 11. a) Let X be a uniformly convex normed space and (x_{n}) be a sequence in X such that $||x_{_n}|| \to 1$ and $||x_{_n} + x_{_m}|| \to 2$ as m, n $\to \infty.$ Prove that $(x_{_n})$ is a Cauchy sequence.
	- b) Let X and Y be normed spaces and $F \in BL(X, Y)$. If $F \in CL(X, Y)$, prove that $F' \in CL(X, Y)$. Also show that the converse holds if Y is a Banach space.
- 12. Let X be a normed space and $A \in CL(X)$. Prove that dim Z $(A' - kl) = dim Z (A - kl) < \infty$ for $0 \neq k \in K$.

 $\frac{1}{\sqrt{2}}$ K23P 0203

Unit – III

- 13. a) Let H be a Hilbert space and $A \in BL(H)$. Prove that there is a unique $B \in BL(H)$ such that for all x, $y \in H$, $\langle A(x), y \rangle = \langle x, B(y) \rangle$.
	- b) Let H be a Hilbert space and $A \in BL(H)$. Prove that $R(A) = H$ if and only if A^* is bounded below.
- 14. a) Let H be a Hilbert space and $A \in BL(H)$. Let A be self adjoint. Prove that $||A|| = \sup \{ |\langle A(x), x \rangle| : x \in H, ||x|| \le 1 \}.$
	- b) State and prove generalized Schwarz inequality.
- 15. a) Let H be a Hilbert space and $A \in BL(H)$. Prove that $\sigma_e(A) \subset \sigma_a(A)$ and $(A) = \sigma_a(A) \cup \{k : \overline{k} \in \sigma_e(A^*)\}$
	- b) Let $H \neq \{0\}$ and $A \in BL(H)$ be self adjoint. Prove that

$$
\{m_A, M_A\} \subset \sigma_a(A) = \sigma(A) \subset [m_A, M_A].
$$

\blacksquare K24P 0319

Reg. No. :

Name :

IV Semester M.Sc. Degree (CBSS – Reg./Supple.-(One Time Mercy Chance)/Imp.) Examination, April 2024 (2017 Admission Onwards) MATHEMATICS MAT4C15 : Operator Theory

 $Time: 3$ Hours 100 Max. Marks : 80

PART – A

Answer four questions from this Part. Each question carries 4 marks.

- 1. Let X be a normed space and $A \in BL(X)$. Show that A is invertible if and only if A is bounded below and surjective.
- 2. Give an example to show that not every bounded sequence in X' has a weak* convergent subsequence.
- 3. Let Y be a Banach space, $\mathsf{F}_{\mathsf{n}}\in\mathsf{CL}(\mathsf{X},\mathsf{Y}),$ $\mathsf{F}\in\mathsf{BL}(\mathsf{X},\mathsf{Y})$ and $||\mathsf{F}_{\mathsf{n}}-\mathsf{F}||\rightarrow$ 0. Prove that $F \in CL(X, Y)$.
- 4. Let X be an infinite dimensional normed space and $A \in CL(X)$. Prove that $0 \in \sigma_{a}(A).$
- 5. Let H be a Hilbert space. Consider A, $B \in BL(H)$, prove that $(A + B)^* = A^* + B^*$ and $(AB)^* = B^*A^*$.
- 6. Let H be a Hilbert space and $A \in BL(H)$. Prove that A is normal if and only if $||A(x)|| = ||A^*(x)||$ for all $x \in H$. (4×4=16)

P.T.O.

K24P 0319 -2- ***K24P** 0319

 $n=0$

0

PART – B

Answer **four** questions from this Part without omitting any Unit. **Each** question carries 16 marks.

Unit – I

7. Let $X = l^p$ with the norm $|| \ ||_p$, $1 \le p \le \infty$. For $x = (x(1), x(2), ...) \in X$, let $C(x) = (0, x(1), x(2), ...)$. Find $\sigma(C), \sigma_e(C)$ and $\sigma_a(C)$.

8. Prove that dual of l^1 is l^∞ .

- 9. a) Let X be a Banach space, $A \in BL(X)$ and $||A||^p < 1$ for some positive integer p. **PART** – B
 PART – B
 **Show that I direct interpret in the Base of Containing and Mix Each question

Show that I – A** is invertible and $(1 - A)^{-1} = \sum_{n=0}^{\infty} A^n$.

Show that $1 - A$ is invertible and $(1 - A)^{-1} = \sum_{n=0}^{\in$ $1 - \nabla \cdot \mathbf{A}^n$. PAH1 – B

Answer four questions from this Part without omitting any Unit. Each question

carries 16 marks.

Unit – I

7. Let $X = l^p$ with the norm $|| \, ||_{p_1} 1 \le p \le \infty$. For $x = (x(1), x(2), ...) \in X$, let
 $C(x) = (0, x(1), x(2), ...)$. Fin
	- \rightarrow x in l^1 if and only if $x_n \rightarrow x$ in l^1 .

Unit – II

- - a) X is Banach and it remains reflexive in any equivalent norm
	- b) X' is reflexive
	- c) Every closed subspace of X is reflexive
	- d) X is separable if and only if X' is separable.
- 11. a) Let X be a Banach space which is uniformly convex in some equivalent norm. Prove that X is reflexive.
	- b) Let X and Y be normed spaces and $F \in BL(X, Y)$. If $F \in CL(X, Y)$, show that $F' \in CL(Y', X').$
- 12. Let X be a normed space and $A \in CL(X)$. Prove that every nonzero spectral value of A is an eigenvalue of A.

$\frac{1}{2}$ $\frac{1}{2}$

Unit – III

- 13. a) Let H be a Hilbert space and $A \in BL(H)$. Prove that $R(A) = H$ if and only if A* is bounded below.
	- b) Let H be a Hilbert space and $A \in BL(H)$. Prove that A is unitary if and only if $||A(x)|| = ||x||$ for all $x \in H$ and A is surjective.
	- c) Give examples of positive operators A and B such that composition operators AB may not be a positive operator.
- 14. a) State and prove generalized Schwarz inequality.
- b) Let A \in BL(H). Prove that $\sigma_{_{\mathbf{\Theta}}}$ (A) \subset ω (A) and σ (A) is contained in closure of ω (A).
- 15. a) Let $A \in BL(H)$ be normal. If x_1 and x_2 are eigenvectors of A corresponding to distinct eigenvalues, prove that $x_1 \perp x_2$. x_2 . .
	- b) Let $A \in BL(H)$ be Hilbert Schmidt operator. Prove that
		- i) A is compact.
		- ii) A^{*} is Hilbert Schmidt operator. (4×16=64)

 $\bigwedge_{i=1}^n \bigwedge_{i=1}^n \bigwedge_{i=1}^n$

K24P0320 **K24P 0320**

Reg. No.:

Name :

IV Semester M.Sc. Degree (C.B.S.S. – Reg./Supple. – (One Time Mercy Chance)/Imp.) Examination, April 2024 (2017 Admission Onwards) mathematics mat4c16 : Differential Geometry

 $Time: 3$ Hours \leftarrow Max. Marks : 80

Answer **four** questions from this part. **Each** question carries **4** marks. **(4×4=16)**

 $PART - A$

- 1. Sketch the gradient vector field of the function $f(x_1, x_2) = x_1^2 + x_2^2$.
- 2. Sketch the graph of the function $f(x_1, x_2) = x_1^2 x_2^2$.
- 3. Prove that $X + Y = \dot{X} + \dot{Y}$.
- 4. Define (i) Radius of Curvature (ii) Circle of Curvature, of a plane curve C.
- 5. Explain why unit speed curves are parametrized by arc length.
- 6. Find the length of the parametrized curve $\alpha(t) = (\sin t, \cos t, \sin t, \cos t)$ in [0, 2π].

Answer **four** questions from this part without omitting **any** Unit. **Each** question carries **16** marks. **(4×16=64)**

 $PART - B$

Unit – I

- 7. a) Find the integral curve through $(1, -1)$ of the vector field $X(x_1, x_2) = (x_1, x_2, -x_2, -\frac{1}{2}x_1).$
	- b) Show that the unit n sphere is an n surface in R^{n+1} .
	- c) Sketch the typical level curves for $c = -1$, 0, 1 and graph of the function $f(x_1, x_2) = x_1 - x_2^2$.

K24P 0320 -2 - \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare

- 8. a) Prove the following : Lt S = $f^{-1}(c)$ be an n surface in R^{n+1} , where f : U \rightarrow R is such that $\nabla f(q) \neq 0$ for all $q \in S$, an let X be a smooth vector field on U whose restriction to S is a tangent vector field on S. If $\alpha : I \rightarrow U$ is any integral curve of X such that $\alpha(t_0) \in S$ for some t_0 in I, then $\alpha(t) \in S$ for all $t \in I$.
	- b) Find the maximum value and minimum value of the function $g(x_1, x_2) = ax_1^2 + bx_2^2 + 2x_1x_2, x_1, x_2 \in R$ on the unit circle $x_1^2 + x_2^2 = 1$.
	- c) Find the orientations on the cylinder $x_1^2 + x_3^2 = 1$ in R³.
- 9. a) Find and sketch the gradient field of the function $f(x_1, x_2) = x_1^2 + x_2^2$.
	- b) i) Verify that a surface of revolution is a 2 surface.
		- ii) Sketch the surface of revolution obtained by rotating the curve $x_2 = 2$.
	- c) Show that graph of any function $f: R^n \to R$ is a level set for some function $F: R^{n+1} \rightarrow R$.

Unit – II

- 10. a) Prove the following : Let S be an n surface in R^3 and α : I \rightarrow S be a geodesic in S with $\alpha \neq 0$. Then a vector field X tangent to S along α is parallel along α if and only if both $||X||$ and the angle between X and α are constant along α .
	- b) Compute the Weingarton map for the circular cylinder $x_2^2 + x_3^2 = a^2$ in R^3 (a \neq 0).
- 11. a) Prove the following :
	- i) $\nabla_{v}(X + Y) = \nabla_{v}(X) + \nabla_{v}(Y)$
	- ii) $\nabla_{v}(fX) = (\nabla_{v}f) X(p) + f(p)(\nabla_{v}X)$
	- iii) $\nabla_{v}(X.Y) = (\nabla_{v}X).Y(p) + X(p).(\nabla_{v}Y)$
	- b) With the usual notations, prove that $L_{p}(v)$.w = $L_{p}(w)$. $v, \forall v, w \in S_{p}$.
	- c) With the usual notations, prove that the parallel transport P_α : $\mathsf{S}_\mathsf{p} \mathbin{\rightarrow} \mathsf{S}_\mathsf{q}$ along α is a vector space isomorphism which preserves dot product.
- 12. a) Find the curvature of the plane curve $C = f^{-1}(0)$ oriented by the outward normal where $f(x_1, x_2) = x_2^2 - x_1$.

b) Show that i)
$$
D_v(fX) = (\nabla_v f) X(p) + f(p)D_v X
$$

ii) $\nabla_v(X.Y) = (D_v X).Y(p) + X(p).(D_v Y)$

K24P0320 -3- **K24P 0320**

Unit – III

13. a) Prove the following : Let η be the 1 – form on R² – {0} defined by $\eta = \frac{x_2}{x_1^2 + x_2^2} +$ $\frac{x_1}{x_1^2 + x_2^2}$. Then for α : [a, b] \rightarrow R² – {0} be any closed

piece wise smooth parametrized curve in R² – {0}, $\int_{\alpha} \eta = 2\pi k$.

- b) Find the Gaussian curvature of the surface $x_1^2 + x_2^2 x_3 = 0$ oriented by its outward normal.
- 14. a) Derive the formula for Gaussian curvature of an oriented $n -$ surface in R^{n+1} .
	- b) Prove the following : Let S be an n surface in R^{n+1} and let $p \in S$. Then there exists an open set V about $p \in R^{n+1}$ and a parametrized n surface $\phi: U \to R^{n+1}$ such that ϕ is a one one map from U on to S \cap V.
- 15. a) Obtain a Torus as a parametrized surface in $R³$.
	- b) Prove the following : Let S be an n surface in R^{n+1} and let f : S \rightarrow R^k. Then f is smooth if and only if f o $\phi: U \rightarrow R^k$ is smooth for each local parametrization $\phi: U \rightarrow S$.
	- c) Let V be a finite dimensional vector space with dot product and let L : $V \rightarrow V$ be a self adjoint linear transformation on V. Prove that there exist an orthonormal basis for V consisting of eigenvectors of L.

\blacksquare K23P 0205

Reg. No. :

Name :

IV Semester M.Sc. Degree (C.B.S.S. – Reg./Supple./Imp.) Examination, April 2023 (2019 Admission Onwards) MATHEMATICS MAT 4E01 : Commutative Algebra

Time : 3 Hours $\overbrace{\hspace{2.5cm}}^{\text{max}}$ $\overbrace{\hspace{2.5cm}}^{\text{max}}$ $\overbrace{\hspace{2.5cm}}^{\text{max}}$ Max. Marks : 80

Answer any four questions from this Part. Each question carries 4 marks.

1. Define ideal. Give an example. Show that the set of all nilpotent elements of a commutative ring form an ideal.

PART – A

- 2. Let A be a nonzero ring. Then show that the following are equivalent.
	- i) A is a field
	- ii) The only ideal in A are 0 and (1).
- 3. Let $A \rightarrow B$ be a ring homomorphism and let p be a prime ideal of A. Then prove that p is the contraction of a prime ideal of B if and only if $p^{ec} = p^c$. .
- 4. Let q be a prime ideal in a ring A. Show that $r(q)$ is the smallest prime ideal containing q.
- 5. If $x \in B$ is integral over A, show that A[x] is finitely generated A module.
- 6. Let $A \subset B$ be integral domains, B integral over A. Prove that B is a field if and only if A is field.

PART – B

Answer any four questions from this Part without omitting any Unit. Each question carries 16 marks.

Unit – I

- 7. a) Show that if $x \in \mathbb{R}$, the Jacbson radical if and only if $1 xy$ is a unit in $A, \forall y \in A$.
	- b) Show that the set \mathcal{R} of all nilpotent elements in a ring A is an maximal ideal, and A\R has no nonzero nilpotent elements.
- Let p_1 , p_2 , ..., p_n be prime ideals and let α be an ideal contained in $\bigcup_{\mathsf{i=1}}^\mathsf{n} \mathsf{p}_\mathsf{i}$.
Then show that $\alpha \subset \mathsf{p}_\mathsf{i}$, for some i. 1 ^{\blacksquare}
- b) Let $\alpha_1, \alpha_2, ..., \alpha_n$ be ideals and p be a prime ideal containing $\bigcap_{i=1}^n \alpha_i$, then prove that a_j , for some i. If $p = \bigcap \alpha_i$, then prove that $p = \alpha_j$, for some i.
- 9. a) If $L \supset M \supset N$ are A-modules, then show that $(L/N)/(M/N) \cong L/M$.
- b) M₁ and M₂ are sub modules of M, then show that (M₁ + M₂)/M₁ \cong M₂/(M₁ \cap M₂).).

Unit – II

- 10. a) Let M be a A module. Then prove that the following are equivalent.
	- i) $M = 0$
	- ii) $M_p = 0$ for all prime ideals p of A
	- iii) $M_m = 0$ for all maximal ideals m of A.
	- b) Let q be a prime ideal in a ring A, then show that $r(q)$ is the smallest prime ideal containing q.
- 11. a) State and prove first uniqueness theorem.
	- b) Show that if A is absolutely flat, then every prime ideal is maximal.
- 12. Let S be a multiplicatively closed subset of A, and let q be a p-primary ideal. Then show that the followings
	- a) If $S \cap p \neq \emptyset$, then $S^{-1}q = S^{-1}$ A.
	- b) If $S \cap p = \phi$, then $S^{-1}q$ is $S^{-1}p$ primary and its contraction in A is q.

<u> 1999 - An Ann Ann an Dùbhachd ann an 1999 - An Dùbhachd ann an 1999 - An Dùbhachd ann an 1999. Bha bhliain 1</u>

Unit $-$ III

- 13. a) Let $A \subset B$, be rings, B is integral over A, let q, q' be prime ideals of B such that $q \subset q'$ and $q^c \subset q'^c$ say, then show that $q = q'$.
	- b) Let $A \subset B$ be rings, C the integral closure of A in B. Let S be a multiplicatively closed subset of A, then prove that $S^{-1}C$ is the integral closure of S^{-1} A in $S^{-1}B$.
- 14. a) Show that the module M is a Noetherian A module if and only if every sub module of M is finitely generated.
	- b) Show that a module M has a composition series if and only if M satisfies both chain conditions.
- 15. a) Show that if A is Noetherian, then the polynomial ring A [x] is also Noetherian.
	- b) Show that, in a Noetherian ring A every ideal is a finite intersection of irreducible ideals.

<u> Handi ka matsayin ka shekarar na ma</u>

K₂₄P 0321

IV Semester M.Sc. Degree (C.B.S.S. - Reg./Supple.-(One Time Mercy **Chance)/Imp.) Examination, April 2024** (2017 Admission Onwards) **MATHEMATICS MAT 4E01: Commutative Algebra**

Time: 3 Hours

Max Marks: 80

Answer any four questions from this Part. Each question carries 4 marks.

1. Define maximal ideal. If F is a field then show that only ideals are $\{0\}$, and F itself

 $PART - A$

- 2. Let a be a nilpotent element of A. Prove that $1 + a$ is a unit of A. Deduce that the sum of a nilpotent element and a unit is a unit.
- 3. Let $g : A \rightarrow B$ be a ring homomorphism such that $g(s)$ is a unit in B for all $s \in S$, then show that there exists a unique ring homomorphism h: S^{-1} $A \rightarrow B$ such that $q =$ hof.
- 4. Show that if, r(a) is maximal then a is primary. In particular, the powers of a maximal ideal m are m-primary.
- 5. If $A \subset B \subset C$ are rings and, if B is integral over A, and C is integral over B, then show that C is integral over A. $\left|\right|$
- 6. Show that, every finite abelian group satisfies both a.c.c. and d.c.c. (4x4=16)

 $PART - B$

Answer any four questions from this Part without omitting any Unit. Each question carries 16 marks.

Unit -1

- 7. a) Let A be ring and $m \neq (1)$ is and ideal of A such that every $x \in A m$ is a unit in A. Then prove that A is local ring and m its maximal ideal.
	- b) Let A be a ring and m a maximal ideal of A, such that every element $1+x, x \in m$, is a unit in A, then show that A is a local ring.

K24P 0321

<u> 1999 - Andrea Start, Amerikaansk politik (d. 19</u>

- 8. a) Show that M is finitely generated A-module if and only if M is isomorphic to a quotient of A^n , for some $n > 0$.
	- b) Let M be a finitely generated A-module and α an ideal of A contained in the Jacobson radical R of A, then show that $\alpha M = M$ implies M = 0.
- 9. a) Let x_i , $1 \le i \le n$, be elements of M whose images in M/mM form a basis of this vector space. Show that the x_i generate M.
	- b) Let $0 \to M_0 \to M_1 + ... M_n \to 0$ be an exact sequence of A-modules in which all the modules M_i and the kernels of all the homomorphism belong to C. Then for any additive function λ on C show that

$$
\sum_{i=0}^n (-1)^i \lambda(M_i) = 0
$$

$Unit - II$

- 10. a) If N and P are sub modules of an A-module M, then prove the followings.
	- i) $S^{-1}(N + P) = S^{-1}(N) + S^{-1}(P)$
	- ii) $S^{-1}(N \cap P) = S^{-1}(N) \cap S^{-1}(P)$.
	- b) Show that every ideal in $S^{-1}A$ is an extended ideal.
- 11. a) Let M be a finitely generated A-module, S a multiplicatively closed subset of A, show that S^{-1} (Ann (M)) = Ann($S^{-1}(M)$).
	- b) Let q be a prime ideal in a ring A, then show that $r(q)$ is the smallest prime ideal containing q.
- 12. a) State and prove first uniqueness theorem.
	- b) Show that, the isolated primary components (i, e., the primary components q_1 corresponding to minimal prime ideals p_1) are uniquely determined by α .

Unit $-$ III

- 13. a) Show that the followings are equivalent.
	- i) $x \in B$ is integral over A.
	- ii) A[x] is a finitely generated A-module.
	- iii) $A[x]$ is contained in a subring C of B such that C is a finitely generated A-module.
	- iv) There exists a faithful A[x]-module M which is finitely generated as an A-module.
	- b) Let $A \subset B$ be rings and let C be the integral closure of A in B. Show that C is integrally closed in B.

- 14. a) For k-vector spaces V the following conditions are equivalent :
	- i) Finite dimension
	- ii) Finite length
	- iii) a.c.c
	- $iv)$ d.c.c Moreover, if these conditions are satisfied, length = dimension.

 $-3-$

- b) Let A be a ring in which the zero ideal is a product m_1 , $m_2,...m_n$ of (not necessarily distinct) maximal ideals. Then A is Noetherian if and only if A is Artinian.
- 15. a) State and prove Hilbert Basis theorem.
	- b) If A is Noetherian, then show that $A[x_1, x_2, ...x_n]$ is also Noetherian.

 $(4 \times 16 = 64)$

