K22P 3319

Reg. No. :

Name :

IV Semester M.Sc. Degree (C.B.S.S. – Reg./Supple./Imp.) Examination, April 2022 (2018 Admission Onwards) MATHEMATICS MAT4C15 : Operator Theory

Time : 3 Hours

Max. Marks: 80

Answer any four questions from this Part. Each question carries 4 marks.

 Let X be a normed space and A ∈ BL(X). Prove that A is invertible if and only if A is bounded below and surjective.

PART – A

- 2. Let X and Y be normed spaces and F_1 and $F_2 \in BL(X, Y)$ and $k \in K$. Show that $(F_1 + F_2)' = F'_1 + F'_2$, $(kF_1)' = kF'_1$.
- Let X and Y be Banach spaces, F : X → Y is a compact map and R(F) is closed in Y. Prove that F is of finite rank.
- 4. If X is an infinite dimensional normed space and A \in CL(X). Prove that $0 \in \sigma_a(A).$
- 5. Let H be a Hilbert space. If each (A_n) is self adjoint operator in BL(H) and $||A_n A|| \rightarrow 0$, then prove that A is self adjoint.
- Prove that the adjoint of Hilbert Schmidt operator on a separable Hilbert space is Hilbert Schmidt operator. (4×4=16)

PART – B

Answer **any four** questions from this Part without omitting any Unit. **Each** question carries **16** marks.

UNIT – I

- 7. a) Let X be a normed space and A \in BL(X) be of finite rank. Show that $\sigma_{_{e}}(A) = \sigma_{_{a}}(A) = \sigma(A).$
 - b) Let X be a Banach space over K and A \in BL(X). Show that σ (A) is a compact subset of K.
- 8. a) Let X be a normed space and X' is separable, prove that X is separable.
 - b) Let $1 \le p \le \infty$ and $\frac{1}{p} + \frac{1}{q} = 1$. Show that the dual of Kⁿ with the norm $|| ||_p$ is linearly isomorphic to Kⁿ with the norm $|| ||_q$.
- 9. a) Let X be a normed space and (x_n) be a sequence in X. Then prove that (x_n) is weak convergent in X if and only if
 - i) (x_n) is a bounded sequence in X and
 - ii) there is some $x \in X$ such that $x'(x_n) \to x'(x)$ for every x' in some subset of X' whose span is dense in X'.
 - b) Let (x'_n) be a sequence in a normed space X. if
 - i) (x'_{n}) is bounded and
 - ii) $(x'_n(x))$ is a Cauchy sequence in K for each x in a subset of X whose span is dense in X.

Then, prove that (x'_n) is weak* convergent in X'. Is the converse true ? Justify your answer.

UNIT – II

- 10. a) Let X be a reflexive normed space. Prove that every closed subspace of X is reflexive.
 - b) Examine the reflexivity of $L^{p}([a, b])$, $1 \le p \le \infty$.
- 11. a) When a normed space X is said to be uniformly convex ?
 - b) Let X be a Banach space which is uniformly convex in some equivalent norm. Then prove that X is reflexive. Is the converse true ? Justify your answer.

 $(4 \times 16 = 64)$

- 12. Let X be a normed space, Y be a Banach space and $\mathsf{F}\in\mathsf{BL}(\mathsf{X},\mathsf{Y}),$ then prove that
 - a) CL(X, Y) is a closed subspace of BL(X, Y).
 - b) $F \in CL(X, Y)$ if and only if $F' \in CL(Y', X')$.

UNIT – III

- 13. Let H be a Hilbert space and $A \in BL(H)$. Then prove the following,
 - a) A is injective if and only if $R(A^*)$ is dense in H.
 - b) The closure of R(A) equals Z(A*)[⊥]. ^C 2 Joon
 - c) R(A) = H if and only if A^* is bounded below.
- 14. Let H be a Hilbert space and $A \in BL(H)$.
 - a) If A is normal, x_1 and x_2 are eigenvectors of A corresponding to distinct eigenvalues, then prove that $x_1 \perp x_2$.
 - b) Prove that every spectral value of A is an approximate eigenvalue of A.
 - c) Define the numerical range of A and show that it is bounded, but not closed.
- 15. Let A be compact operator on non-zero Hilbert space.
 - a) Prove that non-zero approximate eigenvalue of A is an eigenvalue of A and the corresponding eigenspace is finite dimensional.
 - b) If A is self adjoint, then prove that ||A|| or -||A|| is an eigenvalue of A.

VUR UNIN

K23P 0203

Reg. No. :

Name :

IV Semester M.Sc. Degree (CBSS – Reg./Supple./Imp.) Examination, April 2023 (2019 Admission Onwards) MATHEMATICS MAT4C15 : Operator Theory

Time: 3 Hours

Max. Marks : 80

Answer four questions from this Part. Each question carries 4 marks.

- 1. Let X be a Banach space over K and let $A \in BL(X)$. Prove that $\sigma(A)$ is a compact subset of K.
- 2. If $x_n \xrightarrow{\omega} x$ and $y_n \xrightarrow{\omega} y$ in a normed space X and $k_n \rightarrow k$ in K, prove that $x_n + y_n \xrightarrow{\omega} x + y$ and $k_n x_n \xrightarrow{\omega} k x$.
- 3. Let X be a reflexive normed space. Prove that X is separable if and only if X' is separable.
- Let X and Y be a normed spaces and F : X → Y be linear. Prove that F is a compact map if and only if for every bounded sequence (x_n) in X, (F (x_n)) has a subsequence which converges in Y.
- 5. Let H be a Hilbert space and $A \in BL(H)$. Prove that A is normal if and only if $|| A (x) || = || A^*(x)||$ for all $x \in H$.
- 6. Let $A \in BL(H)$. If A is compact, prove that A^* is also compact.

PART – B

Answer **four** questions from this Part without omitting any Unit. **Each** question carries **16** marks.

Unit – I

- 7. Let X be a nonzero Banach space over C and A \in BL (X). Prove that
 - a) $\sigma(A)$ is non empty.
 - b) $\mathbf{r}_{\sigma}(\mathbf{A}) = \inf_{n=1,2,...} \|\mathbf{A}^{n}\|^{\frac{1}{n}} = \lim_{n \to \infty} \|\mathbf{A}^{n}\|^{\frac{1}{n}}$.
- 8. a) Let X be a normed space and $A \in BL(X)$ be of finite rank. Prove that $\sigma_e(A) = \sigma_a(A) = \sigma(A)$.
 - b) Let X, Y and Z be normed spaces. Let $F \in BL(X, Y)$ and $G \in BL(Y, Z)$. Prove that
 - i) (GF)' = F'G'
 - ii) ||F'|| = ||F|| = ||F''|| and
 - iii) $F'' J_x = J_y F$.
- 9. a) Let X be a normed space. If X' is separable, prove that X is separable.
 - b) Prove that $\mathbf{x}_n \xrightarrow{\omega} \mathbf{x}$ in l^1 if and only if $\mathbf{x}_n \to \mathbf{x}$ in l^1 .

- 10. Let X be a normed space. Prove that X is reflexive if and only if every bounded sequence in X has a weak convergent subsequence.
- 11. a) Let X be a uniformly convex normed space and (x_n) be a sequence in X such that $||x_n|| \rightarrow 1$ and $||x_n + x_m|| \rightarrow 2$ as m, $n \rightarrow \infty$. Prove that (x_n) is a Cauchy sequence.
 - b) Let X and Y be normed spaces and $F \in BL(X, Y)$. If $F \in CL(X, Y)$, prove that $F' \in CL(X, Y)$. Also show that the converse holds if Y is a Banach space.
- 12. Let X be a normed space and $A \in CL(X)$. Prove that dim Z $(A' kI) = \dim Z (A kI) < \infty$ for $0 \neq k \in K$.

- 13. a) Let H be a Hilbert space and $A \in BL(H)$. Prove that there is a unique $B \in BL(H)$ such that for all x, $y \in H$, $\langle A(x), y \rangle = \langle x, B(y) \rangle$.
 - b) Let H be a Hilbert space and A∈BL(H). Prove that R(A) = H if and only if A* is bounded below.
- 14. a) Let H be a Hilbert space and $A \in BL(H)$. Let A be self adjoint. Prove that $||A|| = \sup \{|\langle A(x), x \rangle| : x \in H, ||x|| \le 1\}.$
 - b) State and prove generalized Schwarz inequality.
- 15. a) Let H be a Hilbert space and $A \in BL(H)$. Prove that $\sigma_e(A) \subset \sigma_a(A)$ and $\sigma(A) = \sigma_a(A) \cup \{k : \overline{k} \in \sigma_e(A^*)\}.$
 - b) Let $H \neq \{0\}$ and $A \in BL(H)$ be self adjoint. Prove that

$${m_A, M_A} \subset \sigma_a(A) = \sigma(A) \subset [m_A, M_A].$$

K24P 0319

Reg. No. :

Name :

IV Semester M.Sc. Degree (CBSS – Reg./Supple.-(One Time Mercy Chance)/Imp.) Examination, April 2024 (2017 Admission Onwards) MATHEMATICS MAT4C15 : Operator Theory

Time : 3 Hours

Max. Marks: 80

PART – A

Answer four questions from this Part. Each question carries 4 marks.

- Let X be a normed space and A ∈ BL(X). Show that A is invertible if and only if A is bounded below and surjective.
- 2. Give an example to show that not every bounded sequence in X' has a weak* convergent subsequence.
- 3. Let Y be a Banach space, $F_n \in CL(X, Y)$, $F \in BL(X, Y)$ and $||F_n F|| \rightarrow 0$. Prove that $F \in CL(X, Y)$.
- 4. Let X be an infinite dimensional normed space and A \in CL(X). Prove that $0 \in \sigma_a(A)$.
- 5. Let H be a Hilbert space. Consider A, $B \in BL(H)$, prove that $(A + B)^* = A^* + B^*$ and $(AB)^* = B^*A^*$.
- 6. Let H be a Hilbert space and $A \in BL(H)$. Prove that A is normal if and only if $||A(x)|| = ||A^*(x)||$ for all $x \in H$. (4×4=16)

PART – B

Answer **four** questions from this Part without omitting any Unit. **Each** question carries **16** marks.

Unit – I

7. Let X = l^p with the norm || ||_p, 1 ≤ p ≤ ∞. For x = (x(1), x(2), ...) ∈ X, let C(x) = (0, x(1), x(2), ...). Find σ(C), σ_e(C) and σ_a(C).

8. Prove that dual of l^1 is l^{∞} .

- 9. a) Let X be a Banach space, $A \in BL(X)$ and $||A||^p < 1$ for some positive integer p. Show that I – A is invertible and $(I - A)^{-1} = \sum_{n=0}^{\infty} A^n$.
 - b) Show that $x_n \xrightarrow{w} x$ in l^1 if and only if $x_n \rightarrow x$ in l^1 .

- 10. Let X be a reflexive normed space. Prove that
 - a) X is Banach and it remains reflexive in any equivalent norm
 - b) X' is reflexive
 - c) Every closed subspace of X is reflexive
 - d) X is separable if and only if X' is separable.
- 11. a) Let X be a Banach space which is uniformly convex in some equivalent norm. Prove that X is reflexive.
 - b) Let X and Y be normed spaces and F \in BL(X, Y). If F \in CL(X, Y), show that F' \in CL(Y', X').
- 12. Let X be a normed space and $A \in CL(X)$. Prove that every nonzero spectral value of A is an eigenvalue of A.

Unit – III

- 13. a) Let H be a Hilbert space and $A \in BL(H)$. Prove that R(A) = H if and only if A^* is bounded below.
 - b) Let H be a Hilbert space and A ∈ BL(H). Prove that A is unitary if and only if ||A(x)|| = ||x|| for all x ∈ H and A is surjective.
 - c) Give examples of positive operators A and B such that composition operators AB may not be a positive operator
- 14. a) State and prove generalized Schwarz inequality.
 - b) Let $A \in BL(H)$. Prove that $\sigma_e(A) \subset \omega(A)$ and $\sigma(A)$ is contained in closure of $\omega(A)$.
- 15. a) Let $A \in BL(H)$ be normal. If x_1 and x_2 are eigenvectors of A corresponding to distinct eigenvalues, prove that $x_1 \perp x_2$.
 - b) Let $A \in BL(H)$ be Hilbert Schmidt operator. Prove that

TANUR

- i) A is compact.
- ii) A* is Hilbert Schmidt operator.

(4×16=64)

K24P 0320

Reg. No. :

Name :

IV Semester M.Sc. Degree (C.B.S.S. – Reg./Supple. – (One Time Mercy Chance)/Imp.) Examination, April 2024 (2017 Admission Onwards) MATHEMATICS MAT4C16 : Differential Geometry

Time : 3 Hours

Max. Marks : 80

Answer four questions from this part. Each question carries 4 marks. (4×4=16)

PART - A

- 1. Sketch the gradient vector field of the function $f(x_1, x_2) = x_1^2 + x_2^2$.
- 2. Sketch the graph of the function $f(x_1, x_2) = x_1^2 x_2^2$.
- 3. Prove that $X + Y = \dot{X} + \dot{Y}$.
- 4. Define (i) Radius of Curvature (ii) Circle of Curvature, of a plane curve C.
- 5. Explain why unit speed curves are parametrized by arc length.
- 6. Find the length of the parametrized curve $\alpha(t) = (\sin t, \cos t, \sin t, \cos t)$ in $[0, 2\pi]$.

Answer **four** questions from this part without omitting **any** Unit. **Each** question carries **16** marks. (4×16=64)

PART – B

- 7. a) Find the integral curve through (1, -1) of the vector field $X(x_1, x_2) = (x_1, x_2, -x_2, -\frac{1}{2}x_1).$
 - b) Show that the unit n sphere is an n surface in \mathbb{R}^{n+1} .
 - c) Sketch the typical level curves for c = -1, 0, 1 and graph of the function $f(x_1, x_2) = x_1 x_2^2$.

K24P 0320

- 8. a) Prove the following : Lt S = $f^{-1}(c)$ be an n surface in R^{n+1} , where f : U \rightarrow R is such that $\nabla f(q) \neq 0$ for all $q \in S$, an let X be a smooth vector field on U whose restriction to S is a tangent vector field on S. If $\alpha : I \rightarrow U$ is any integral curve of X such that $\alpha(t_0) \in S$ for some t_0 in I, then $\alpha(t) \in S$ for all $t \in I$.
 - b) Find the maximum value and minimum value of the function $g(x_1, x_2) = ax_1^2 + bx_2^2 + 2x_1x_2, x_1, x_2 \in R$ on the unit circle $x_1^2 + x_2^2 = 1$.
 - c) Find the orientations on the cylinder $x_1^2 + x_3^2 = 1$ in \mathbb{R}^3 .
- 9. a) Find and sketch the gradient field of the function $f(x_1, x_2) = x_1^2 + x_2^2$.
 - b) i) Verify that a surface of revolution is a 2 surface.
 - ii) Sketch the surface of revolution obtained by rotating the curve $x_2 = 2$.
 - c) Show that graph of any function $f: \mathbb{R}^n \to \mathbb{R}$ is a level set for some function $F: \mathbb{R}^{n+1} \rightarrow \mathbb{R}.$

- 10. a) Prove the following : Let S be an n surface in \mathbb{R}^3 and α : I \rightarrow S be a geodesic in S with $\dot{\alpha} \neq 0$. Then a vector field X tangent to S along α is parallel along α if and only if both ||X|| and the angle between X and $\dot{\alpha}$ are constant along α .
 - b) Compute the Weingarton map for the circular cylinder $x_2^2 + x_3^2 = a^2$ in R^3 (a \neq 0).
- 11. a) Prove the following :
- i) $\nabla_{v}(X + Y) = \nabla_{v}(X) + \nabla_{v}(Y)$ ii) $\nabla_{v}(fX) = (\nabla_{v}f) X(p) + f(p)(\nabla X)$ ii) $\nabla_{y}(fX) = (\nabla_{y}f) X(p) + f(p)(\nabla_{y}X)$
 - iii) $\nabla_{y}(X.Y) = (\nabla_{y}X).Y(p) + X(p).(\nabla_{y}Y)$
 - b) With the usual notations, prove that $L_{p}(\upsilon).w = L_{p}(w).\upsilon, \forall \upsilon, w \in S_{p}$.
 - c) With the usual notations, prove that the parallel transport $P_{\alpha}: S_{p} \rightarrow S_{q}$ along α is a vector space isomorphism which preserves dot product.
- 12. a) Find the curvature of the plane curve $C = f^{-1}(0)$ oriented by the outward normal where $f(x_1, x_2) = x_2^2 - x_1$.

b) Show that i)
$$D_{\upsilon}(fX) = (\nabla_{\upsilon}f) X(p) + f(p)D_{\upsilon}X$$

ii) $\nabla_{\upsilon}(X.Y) = (D_{\upsilon}X).Y(p) + X(p).(D_{\upsilon}Y)$

Unit – III

13. a) Prove the following : Let η be the 1 – form on R² – {0} defined by $\eta = -\frac{x_2}{x_1^2 + x_2^2} + \frac{x_1}{x_1^2 + x_2^2}$. Then for α : [a, b] \rightarrow R² – {0} be any closed

piece wise smooth parametrized curve in $R^2 - \{0\}$, $\int_{\alpha} \eta = 2\pi k$.

- b) Find the Gaussian curvature of the surface $x_1^2 + x_2^2 x_3 = 0$ oriented by its outward normal.
- 14. a) Derive the formula for Gaussian curvature of an oriented n surface in R^{n+1} .
 - b) Prove the following : Let S be an n surface in \mathbb{R}^{n+1} and let $p \in S$. Then there exists an open set V about $p \in \mathbb{R}^{n+1}$ and a parametrized n surface $\phi : U \to \mathbb{R}^{n+1}$ such that ϕ is a one one map from U on to $S \cap V$.
- 15. a) Obtain a Torus as a parametrized surface in R^3 .
 - b) Prove the following : Let S be an n surface in \mathbb{R}^{n+1} and let $f : S \to \mathbb{R}^k$. Then f is smooth if and only if $f \circ \phi : U \to \mathbb{R}^k$ is smooth for each local parametrization $\phi : U \to S$.
 - c) Let V be a finite dimensional vector space with dot product and let $L: V \rightarrow V$ be a self adjoint linear transformation on V. Prove that there exist an orthonormal basis for V consisting of eigenvectors of L.

K23P 0205

Reg. No. :

Name :

IV Semester M.Sc. Degree (C.B.S.S. – Reg./Supple./Imp.) Examination, April 2023 (2019 Admission Onwards) MATHEMATICS MAT 4E01 : Commutative Algebra

Time : 3 Hours

Max. Marks: 80

Answer any four questions from this Part. Each question carries 4 marks.

1. Define ideal. Give an example. Show that the set of all nilpotent elements of a commutative ring form an ideal.

PART – A

- 2. Let A be a nonzero ring. Then show that the following are equivalent.
 - i) A is a field
 - ii) The only ideal in A are 0 and (1).
- 3. Let A \rightarrow B be a ring homomorphism and let p be a prime ideal of A. Then prove that p is the contraction of a prime ideal of B if and only if $p^{ec} = p^{c}$.
- 4. Let q be a prime ideal in a ring A. Show that r(q) is the smallest prime ideal containing q.
- 5. If $x \in B$ is integral over A, show that A[x] is finitely generated A module.
- Let A ⊂ B be integral domains, B integral over A. Prove that B is a field if and only if A is field.

PART – B

Answer **any four** questions from this Part without omitting **any** Unit. **Each** question carries **16** marks.

Unit – I

- 7. a) Show that if $x \in \mathbb{R}$, the Jacbson radical if and only if 1 xy is a unit in $A, \forall y \in A$.
 - b) Show that the set \mathcal{R} of all nilpotent elements in a ring A is an maximal ideal, and A $\$ has no nonzero nilpotent elements.
- 8. a) Let $p_1, p_2, ..., p_n$ be prime ideals and let α be an ideal contained in $\bigcup_{i=1}^n p_i$. Then show that $\alpha \subset p_i$, for some i.
 - b) Let $\alpha_1, \alpha_2, ..., \alpha_n$ be ideals and p be a prime ideal containing $\bigcap_{i=1}^n \alpha_i$, then prove that $p \supseteq a_i$, for some i. If $p = \bigcap \alpha_i$, then prove that $p = \alpha_i$, for some i.
- 9. a) If $L \supset M \supset N$ are A-modules, then show that $(L/N)/(M/N) \cong L/M$.
 - b) M_1 and M_2 are sub modules of M, then show that $(M_1 + M_2)/M_1 \cong M_2/(M_1 \cap M_2)$.

- 10. a) Let M be a A module. Then prove that the following are equivalent.
 - i) M = 0
 - ii) $M_p = 0$ for all prime ideals p of A
 - iii) $M_m = 0$ for all maximal ideals m of A.
 - b) Let q be a prime ideal in a ring A, then show that r(q) is the smallest prime ideal containing q.
- 11. a) State and prove first uniqueness theorem.
 - b) Show that if A is absolutely flat, then every prime ideal is maximal.
- 12. Let S be a multiplicatively closed subset of A, and let q be a p-primary ideal. Then show that the followings
 - a) If $S \cap p \neq \phi$, then $S^{-1}q = S^{-1} A$.
 - b) If $S \cap p = \phi$, then $S^{-1}q$ is $S^{-1}p$ primary and its contraction in A is q.

- 13. a) Let A \subset B, be rings, B is integral over A, let q, q' be prime ideals of B such that q \subset q' and q^c \subset q'^c say, then show that q = q'.
 - b) Let $A \subset B$ be rings, C the integral closure of A in B. Let S be a multiplicatively closed subset of A, then prove that $S^{-1}C$ is the integral closure of $S^{-1}A$ in $S^{-1}B$.
- 14. a) Show that the module M is a Noetherian A module if and only if every sub module of M is finitely generated.
 - b) Show that a module M has a composition series if and only if M satisfies both chain conditions.
- 15. a) Show that if A is Noetherian, then the polynomial ring A [x] is also Noetherian.
 - b) Show that, in a Noetherian ring A every ideal is a finite intersection of irreducible ideals.

K24P 0321

Reg. No. :

Name :

IV Semester M.Sc. Degree (C.B.S.S. – Reg./Supple.-(One Time Mercy Chance)/Imp.) Examination, April 2024 (2017 Admission Onwards) MATHEMATICS MAT 4E01 : Commutative Algebra

Time : 3 Hours

Max. Marks : 80

Answer any four questions from this Part. Each question carries 4 marks.

1. Define maximal ideal. If F is a field then show that only ideals are {0}, and F itself.

PART – A

- 2. Let a be a nilpotent element of A. Prove that 1 + a is a unit of A. Deduce that the sum of a nilpotent element and a unit is a unit.
- 3. Let $g : A \to B$ be a ring homomorphism such that g(s) is a unit in B for all $s \in S$, then show that there exists a unique ring homomorphism $h : S^{-1} A \to B$ such that g = hof.
- 4. Show that if, r(a) is maximal then a is primary. In particular, the powers of a maximal ideal m are m-primary.
- 5. If $A \subset B \subset C$ are rings and, if B is integral over A, and C is integral over B, then show that C is integral over A.
- 6. Show that, every finite abelian group satisfies both a.c.c. and d.c.c. (4×4=16)

PART – B

Answer **any four** questions from this Part without omitting **any** Unit. **Each** question carries **16** marks.

- 7. a) Let A be ring and $m \neq (1)$ is and ideal of A such that every $x \in A m$ is a unit in A. Then prove that A is local ring and m its maximal ideal.
 - b) Let A be a ring and m a maximal ideal of A, such that every element $1+x, x \in m$, is a unit in A, then show that A is a local ring.

K24P 0321

- 8. a) Show that M is finitely generated A-module if and only if M is isomorphic to a quotient of A^n , for some n > 0.
 - b) Let M be a finitely generated A-module and α an ideal of A contained in the Jacobson radical R of A, then show that $\alpha M = M$ implies M = 0.
- 9. a) Let x_i , $1 \le i \le n$, be elements of M whose images in M/mM form a basis of this vector space. Show that the x_i generate M.
 - b) Let $0 \to M_0 \to M_1 + ... M_n \to 0$ be an exact sequence of A-modules in which all the modules M_i and the kernels of all the homomorphism belong to C. Then for any additive function λ on C show that

$$\sum_{i=0}^{n} (-1)^{i} \lambda(\mathsf{M}_{i}) = 0$$

Unit – II

- 10. a) If N and P are sub modules of an A-module M, then prove the followings.
 - i) $S^{-1}(N + P) = S^{-1}(N) + S^{-1}(P)$
 - ii) $S^{-1}(N \cap P) = S^{-1}(N) \cap S^{-1}(P)$.
 - b) Show that every ideal in $S^{-1}A$ is an extended ideal.
- 11. a) Let M be a finitely generated A-module, S a multiplicatively closed subset of A, show that S^{-1} (Ann (M)) = Ann(S^{-1} (M)).
 - b) Let q be a prime ideal in a ring A, then show that r(q) is the smallest prime ideal containing q.
- 12. a) State and prove first uniqueness theorem.
 - b) Show that, the isolated primary components (i, e., the primary components q_1 corresponding to minimal prime ideals p_1) are uniquely determined by α .

- 13. a) Show that the followings are equivalent.
 - i) $x \in B$ is integral over A.
 - ii) A[x] is a finitely generated A-module.
 - iii) A[x] is contained in a subring C of B such that C is a finitely generated A-module.
 - iv) There exists a faithful A[x]-module M which is finitely generated as an A-module.
 - b) Let $A \subset B$ be rings and let C be the integral closure of A in B. Show that C is integrally closed in B.

- 14. a) For k-vector spaces V the following conditions are equivalent :
 - i) Finite dimension
 - ii) Finite length
 - iii) a.c.c
 - iv) d.c.cMoreover, if these conditions are satisfied, length = dimension.
 - b) Let A be a ring in which the zero ideal is a product m₁, m₂,...m_n of (not necessarily distinct) maximal ideals. Then A is Noetherian if and only if A is Artinian.
- 15. a) State and prove Hilbert Basis theorem.
 - b) If A is Noetherian, then show that $A[x_1, x_2, ...x_n]$ is also Noetherian.

(4×16=64)

-3-