K22P 1408

Reg. No. :

Name :

III Semester M.Sc. Degree (CBSS – Reg./Sup./Imp.) Examination, October 2022 (2019 Admission Onwards) MATHEMATICS MAT3C11 : Number Theory

Time : 3 Hours

Max. Marks : 80

Answer any four questions from Part A. Each question carries 4 marks.

- 1. Prove that the infinite series $\sum_{n=1}^{\infty} 1/P_n$ diverges.
- 2. State and prove Euclid's lemma.
- 3. If f is multiplicative then prove that f(1) = 1.
- Assume that (a, m) = d. Then prove that the linear congruence ax ≡ b (mod) m has solutions if and only if d|b.
- 5. Determine whether 219 is a quadratic residue or non residue mod 383.
- 6. Prove that an algebraic number α is an algebraic integer if and only if its minimum polynomial over Q has coefficients in Z.

PART - B

Answer **any four** questions from Part **B not** omitting **any** Unit, **Each** question carries **16** marks.

Unit – 1

- 7. a) State and prove the division algorithm.
 - b) Prove that every integer n > 1 is either a prime number or a product of prime numbers.

K22P 1408

- 8. a) If $n \ge 1$, then Prove that $\phi(n) = \sum_{d|n} \mu(d) \frac{n}{d}$.
 - b) Assume f is multiplicative. Prove that $f^{-1}(n) = \mu(n) f(n)$ for every square free n.
- 9. a) State and prove Lagrange's theorem.
 - b) Solve the congruence $5x \equiv 3 \pmod{24}$.

Unit – 2

- 10. a) Prove that the Legendre' symbol (n|p) is a completely multiplicative function of n.
 - b) State and prove quadratic reciprocity law.
- 11. a) Let (a, m) = 1. Then prove that if a is a primitive root mod m if and only if the numbers a, a^2 , ..., $a^{\phi(m)}$ form a reduced residue system mod m.
 - b) If p is an odd prime and $\alpha \ge 1$ then prove that there exist an odd primitive roots g modulo p^{α} and each such g is also a primitive root modulo $2p^{\alpha}$.
- 12. a) Write in detail any one application of primitive roots in cryptography.
 - b) Solve the superincreasing knapsack problem.

 $28 = 3x_1 + 5x_2 + 11x_3 + 20x_4 + 41x_5$

Unit – 3

- 13. a) Prove that every subgroup H of a free abelian group G of rank n is free of rank s ≤ n. Moreover there exist a basis u₁, u₂,..., u_n of G and positive integers α₁, α₂, ..., α_s such that, α₁u₁, α₂u₂,..., α_su_s is a basis for H.
 - b) Let G be a free abelian group of rank n with basis {x₁, x₂,..., x_n}. Suppose (a_{ij}) is an n × n matrix with integer entries. Then prove that the elements $y_i = \sum_j a_{ij} x_j$ form a basis of G if and only if (a_{ij}) is unimodular.

- 14. a) Suppose $\{\alpha_1, \alpha_2, ..., \alpha_n\} \in D$ form a Q-basis for K. Then prove that if $\Delta[\alpha_1, \alpha_2, ..., \alpha_n]$ is square free then $\{\alpha_1, \alpha_2, ..., \alpha_n\}$ is an integral basis.
 - b) Prove that every number field K possess an integral basis and the additive group of D is free abelian group of rank n equal to the degree of K.
- 15. a) Let d be a square free rational integer. Then prove that the integers of $Q(\sqrt{d})$ are
 - a) $Z | \sqrt{d} |$ if $d \not\equiv 1 \pmod{4}$ b) $Z | \frac{1}{2} + \frac{1}{2} \sqrt{d} |$ if $d \not\equiv 1 \pmod{4}$.
 - b) Prove that the minimum polynomial of $\xi = e^{\frac{p}{p}}$, p an odd prime, over Q is $f(t) = t^{p-1} + t^{p-2} + ... + t + 1$ and the degree of Q(ξ) is p 1.

K23P 1408

Reg. No. :

Name :

III Semester M.Sc. Degree (CBSS – Reg./Supple./Imp.) Examination, October 2023 (2020 Admission Onwards) MATHEMATICS MAT3C11 : Number Theory

PART - A

Time : 3 Hours

Max. Marks : 80

Answer any four questions from Part A. Each question carries 4 marks.

- 1. Prove that if (a, b) = 1 then $(a^n, b^k) = 1$ for all $n \ge 1, k \ge 1$.
- 2. Find all integers such that $\phi(n) = \frac{n}{2}$.
- 3. Find the quadratic residues and non residue modulo 11.
- 4. Encrypt the message "RETURN HOME" using caeser ciphar.
- 5. Define an R-module. Find all submodules of \mathbb{Z} -module.
- 6. Check whether $e^{\frac{2\pi i}{23}}$ is algebraic integer or not ?

PART – B

Answer **any four** questions from Part **B** not omitting **any** Unit. **Each** question carries **16** marks.

Unit – 1

- 7. a) State and prove fundamental theorem of arithmetic.
 - b) Given that a and b are integers with b > 0. Then prove that there exists a unique pair of integers q and r such that a = bq + r, with $0 \le r < b$ and r = 0 if and only if b|a.
- 8. a) If $n \ge 1$, prove that $\sum_{d|n} \phi(d) = n$.
 - b) Assume f is multiplicative. Prove that f is completely multiplicative if and only if $f^{-1}(n) = \mu(n) f(n)$ for all $n \ge 1$.

K23P 1408

- 9. a) State and prove Chinese remainder theorem.
 - b) Find all positive integers n for which $n^{13} \equiv n \pmod{1365}$.

Unit – 2

- 10. a) State and prove Gauss' lemma.
 - b) Define Jacobi symbol and prove that $(-1/p) = (-1)^{\frac{p-1}{2}}$ and $(2/p) = (-1)^{\frac{p^2-1}{8}}$.
- 11. a) Suppose (a, m) = 1. Prove that a is a primitive root modulo m if and only if the numbers a, a^2 , ..., $a^{\phi(m)}$ form a reduced residue system modulo m.
 - b) If p is an odd prime and $\alpha \le 1$ then prove that there exist odd primitive roots g modulo p^{α} and each such g is also a primitive root modulo $2p^{\alpha}$.
- 12. a) Explain RSA public key algorithm with an example.
 - b) Obtain all solutions of the knapsack problem $28 = 3x_1 + 5x_2 + 11x_3 + 20x_4 + 41x_5.$

Unit – 3

- 13. a) Given R is a ring. Then prove that every symmetric polynomial in $R[t_1,...,t_n]$ is expressible as a polynomial with coefficients in R in the elementary symmetric polynomials $s_1,...,s_n$.
 - b) Let G be a free abelian group of rank r and H is a subgroup of G. Then prove that ${}^{G}_{H}$ is finite if and only if the rank of G and H are equal.
- 14. a) Prove that the set A of algebraic numbers is a subfield of the complex field \mathbb{C} .
 - b) Prove that a complex number θ is an algebraic integer if and only if the additive group generated by all powers 1, θ , θ^2 , ... is finitely generated.
- 15. a) If d is a square-free rational integer, then prove that the integers of $\mathbb{Q}(\sqrt{d})$ are

$$\mathbb{Z}\left[\sqrt{d}\right] \quad \text{if} \quad d \neq 1 \pmod{4}$$
$$\mathbb{Z}\left[\frac{1}{2} + \frac{1}{2}\sqrt{d}\right] \quad \text{if} \quad d \equiv 1 \pmod{4}$$

b) Prove that the ring \mathfrak{D} of integers $\mathbb{Q}(\zeta)$ is $\mathbb{Z}[\zeta]$.

K23P 1409

Reg. No. :

Name :

III Semester M.Sc. Degree (C.B.S.S. – Reg./Supple./Imp.) Examination, October 2023 (2020 Admission Onwards) MATHEMATICS MAT3C12 : Functional Analysis

PART – A

Time : 3 Hours

Max. Marks : 80

Answer four questions from this Part. Each question carries 4 marks.

- 1. State and prove Riesz lemma.
- 2. Show that c_{00} cannot be a Banach space with respect to any norm.
- 3. If a closed map F is bijective, then show that its inverse F^{-1} is also closed.
- 4. State open mapping theorem.
- 5. Let X be an inner product space and $x \in X$. Prove that $\langle x, y \rangle = 0$ for all $y \in X$ if and only if x = 0.
- Let E be an orthogonal subset of an inner product space X and 0 ∉ E. Show that E is linearly independent.

PART – B

Answer **four** questions from this Part without omitting any Unit. **Each** question carries **16** marks.

Unit – I

- 7. a) Define a normed space and draw the sets $\{x \in \mathbb{R}^2; \|x\|_p = 1\}$ for p = 1, 2 and ∞ .
 - b) If X is a finite dimensional normed space then show that every closed and bounded subset of X is compact.

K23P 1409

- 8. a) Show that every linear map from a finite dimensional normed space is continuous.
 - b) Let X and Y be normed spaces and $F : X \rightarrow Y$ be a linear map such that R(F) of F is finite dimensional. Show that F is continuous if and only if the zero space Z(F) is closed in X.
- 9. a) State and prove Hahn-Banach separation theorem.
 - b) If X is a normed space and X' is strictly convex then show that for every subspace Y of X and every $g \in Y'$, there is a unique Hahn-Banach extension of g to X.

- 10. a) State and prove Uniform Boundedness Principle.
 - b) Give the geometric interpretation of Uniform Boundedness Principle.
- 11. State and prove Closed Graph Theorem.
- 12. a) State and prove Bounded Inverse Theorem.
 - b) Let X be a Banach space in the norm **|| ||**. Show that there is a norm **|| ||** on X which is comparable to the norm **|| ||**, but in which X is not complete.

- 13. a) State and prove Gram-Schmidt orthonormalization process.
 - b) State and prove Riesz-Fischer theorem.
- 14. a) If H is a non-zero separable Hilbert space over K then show that H has a countable orthonormal basis.
 - b) If E is a convex subset of an inner product space X, then show that there exists at most one best approximation from E to X.
- 15. a) State and prove Riesz representation theorem.
 - b) Let H be a Hilbert space and for $f \in H'$, let y_f be the representer of f in H. Show that the map T : $H \rightarrow H'$ given by T(f) = y_f is a surjective conjugatelinear isometry.

K22P 1410

Reg. No. :

III Semester M.Sc. Degree (CBSS – Reg./Sup./Imp.) Examination, October 2022 (2019 Admission Onwards) MATHEMATICS MAT 3C13 : Complex Function Theory

Time : 3 Hours

Max. Marks : 80

PART – A

Attempt any four questions from this Part. Each question carries 4 marks.

- 1. Define the following terms :
 - i) Period module of a meromorphic function
 - ii) Discrete module.
- 2. Show that the series $\sum_{n=1}^{n-z}$ converges uniformly and absolutely on a subset of the complex plane \mathbb{C} .
- 3. Is $\mathbb{C} \{0\}$ is simply connected ? Justify your answer.
- 4. Is the sets $\{z : |z| < 1\}$ and \mathbb{C} are homeomorphic ? Justify your answer.
- 5. Prove that a harmonic function u in \mathbb{C} is infinitely differentiable.
- 6. Given that v_1 and v_2 are two harmonic conjugates of a harmonic function u. Prove that $v_2 - v_1 = c$, where c is a constant.

PART – B

Answer **any four** questions from this Part without omitting any Unit. **Each** question carries **16** marks.

Unit – I

- 7. a) Prove the following :
 - i) Let S = {z : Rez ≥ a} where a > 1. If ε > 0, then there is a number δ > 0, 0 < δ < 1, such that for all z ∈ S, $\left| \int_{\alpha}^{\beta} (e^{t} - 1)^{-1} t^{z-1} dt \right| < \varepsilon$ whenever δ > β > α .
 - ii) Let S = {z : Rez \leq A} where $-\infty < A < \infty$. If $\varepsilon > 0$, then there is a number k > 1 such that for all $z \in S$, $\left| \int_{\alpha}^{\beta} (e^{t} 1)^{-1} t^{z-1} dt \right| < \varepsilon$ whenever $\beta > \alpha > k$.
 - b) Prove : A non-constant elliptic function has equally many poles as it has zeroes.
- 8. With the usual notations, prove that :

a)
$$\wp(2z) = \frac{1}{4} \left(\frac{\wp''(z)}{\wp'(z)} \right)^2 - 2\wp(z)$$

b) $\wp'(z) = -\sigma(2z) / \sigma(z)^4$
c) $\begin{vmatrix} \wp(z) & \wp'(z) & 1 \\ \wp(u) & \wp'(u) & 1 \\ \wp(u+z) & -\wp'(u+z) & 1 \end{vmatrix} = 0$
 $\wp'(z) & \zeta(z-u) + \zeta(z+u) - 2\zeta(z)$

- d) $\frac{\$ \Im(z)}{\$ \Im(z) \$ \Im(u)} = \zeta(z u) + \zeta(z + u) 2\zeta(z)$
- 9. a) Prove that Riemann's zeta function ζ has no other zeroes outside the closed strip {z : $0 \le z \le 1$ }.
 - b) Prove that if Re z > 1, then $\zeta(z) = \prod_{n=1}^{\infty} \left(\frac{1}{1-p_n^{-z}}\right)$ where p_n is a sequence of prime numbers.

Unit – II

- 10. State and prove Schwarz Reflection Principle.
- 11. a) Let $\gamma : [0, 1] \to \mathbb{C}$ be a path and let $\{(f_t, D_t) : 0 \le t \le 1\}$ be an analytic continuation along γ . Show that $\{(f'_t, D_t) : 0 \le t \le 1\}$ is also a continuation along γ .
 - b) Let (f, D) be a function element which admits unrestricted continuation in the simply connected region G. Prove that there is an analytic function $F : G \to \mathbb{C}$ such that F(z) = f(z) for all z in D.
 - c) Is the region $\{z \in \mathbb{C} : 1 < |z| < 2\}$ is simply connected ? Justify your answer.
- 12. State and prove the Mittag-Leffler's theorem.

- 13. a) State and prove Jensen's formula.
 - b) State and prove Maximum Principle (Second Version).
- 14. Prove that the Dirchlet problem can be solved in a unit disk.
- 15. a) Define the Poisson kernel $P_r(\theta)$. Prove that $P_r(\theta) = \operatorname{Re}\left(\frac{1 + re^{i\theta}}{1 re^{i\theta}}\right)$.
 - b) Prove that $P_r(\theta) < P_r(\delta)$ if $0 < \delta < |\theta| \le \pi$.
 - c) For |z| < 1 let $u(z) = Im\left[\left(\frac{1+z}{1-z}\right)^2\right]$. Show that u is harmonic.

K23P 1410

Reg. No. :

Name :

III Semester M.Sc. Degree (C.B.S.S. – Reg./Supple./Imp.) Examination, October 2023 (2020 Admission Onwards) MATHEMATICS MAT3C13 : Complex Function Theory

PART – A

Time : 3 Hours

Max. Marks : 80

Answer any four questions. Each question carries 4 marks.

- 1. Prove that the sum of the residues of an elliptic function is zero.
- 2. Define the period module. Show that if f is not a constant function, then the elements of the period module of f are isolated.
- 3. Let $\gamma : [0,1] \to \mathbb{C}$ be a path from a to b and let $\{(f_t, D_t) : 0 \le t \le 1\}$ and $\{(g_t, B_t) : 0 \le t \le 1\}$ be analytic continuations along γ such that $[f_0]_a = [g_0]_a$. Prove that $[f_1]_b = [g_1]_b$.
- 4. Show that if G an open connected subset of \mathbb{C} , is homeomorphic to the unit disk, then G is simply connected.
- 5. a) Prove that if $u: G \to \mathbb{C}$ is harmonic, then u is infinitely differentiable.
 - b) Define the mean value property.
- 6. Prove that if $u: G \to \mathbb{R}$ is a continuous function which has the MVP, then u is harmonic.

PART – B

Answer **any four** questions without omitting **any** Unit. **Each** question carries **16** marks.

Unit – I

- 7. a) Define basis of a period module. Prove that any two bases of the same module are connected by a unimodular transformation.
 - b) Prove that an elliptic function without poles is a constant.
- 8. a) Prove that a non-constant elliptic function has equally many poles as it has zeros.
 - b) Prove that zeros $a_1, a_2, ..., a_n$ and poles $b_1, b_2, ..., b_n$ of an elliptic function satisfy $a_1 + a_2 + ... + a_n \equiv b_1 + b_2 + ... + b_n \pmod{M}$.

9. a) Prove that for Rez > 1, $\zeta(z) \Gamma(z) = \int_{0}^{\infty} (e^{t} - 1)^{-1} t^{z-1} dt$.

b) Define Riemann's functional equation. State and prove Euler's theorem.

Unit – II

- 10. State and prove Runge's theorem.
- 11. State and prove Mittag-Leffler's theorem.
- 12. a) When does a function element (f,D) said to admit unrestricted analytic continuation in G ?
 - b) State and prove Monodromy theorem.

- 13. a) State and prove Jensen's formula. Also state Poisson-Jensen formula.
 - b) Suppose $f(0) \neq 0$ in Jensen's formula. Show that if f has a zero at z = 0 of multiplicity m, then $\log \left| \frac{f^{(m)}(0)}{m!} \right| + m\log r = -\sum_{k=1}^{n} \log \left(\frac{r}{|a_k|} \right) + \frac{1}{2\pi} \int_{0}^{2\pi} \log |f(re^{i\theta})| d\theta$.

- 14. a) Define subharmonic and superharmonic function. When does one say that a function satisfies the maximum principle ?
 - b) Let G be a region and $\phi: G \to \mathbb{R}$ be a continuous function. Then prove that ϕ is subharmonic iff for every region G₁ contained in G and every harmonic function u₁ on G₁, ϕu_1 satisfies the maximum principle on G₁.
 - c) If ϕ_1 and ϕ_2 are subharmonic functions on G and if $\phi(z) = \max \{\phi_1(z), \phi_2(z)\}$ for each z in G, then show that ϕ is a subharmonic function.
- 15. Let $D = \{z : |z| < 1\}$ and suppose that $f : \partial D \to \mathbb{R}$ is a continuous function. Then prove that there is a continuous function $u : \overline{D} \to \mathbb{R}$ such that
 - a) u(z) = f(z) for z in ∂D .
 - b) u is harmonic in D. Also show u is unique and is defined by the formula

$$u(re^{i\theta}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(\theta - t) f(e^{it}) dt, \text{ for } 0 \le r < 1, 0 \le \theta \le 2\pi.$$

K22P 1411

Reg. No. :

Name :

III Semester M.Sc. Degree (CBSS – Reg./Sup./Imp.) Examination, October 2022 (2019 Admission Onwards) MATHEMATICS MAT3C14 – Advanced Real Analysis

Time : 3 Hours

Max. Marks : 80

PART – A

Answer any four questions from this Part. Each question carries 4 marks. (4×4=16)

- 1. Let B be the uniform closure of an algebra A of bounded functions. Then prove that B is a uniformly closed algebra.
- 2. Give an example of a functions with f_n converges to f, but f'_n does not converges to f'. Justify your answer.
- 3. Define orthogonal system of functions. Give example with justification.
- 4. Prove that $\lim_{x \to +\infty} x^{-\alpha} \log x = 0$.
- 5. Prove that the existence of all partial derivatives does not imply the differentiability.
- 6. Explain directional derivative of f at x in the direction of a unit vector u and continuously differentiable functions.

PART – B

Answer **any four** questions from this Part without omitting any Unit. **Each** question carries **16** marks. (4×16=64)

Unit – I

7. a) Suppose $f_n \rightarrow f$ uniformly on a set E in a metric space. Let x be a limit point of E, and suppose that $\lim_{t \rightarrow x} f_n(t) = A_n$, (n = 1, 2, 3, ...). Then Prove that $\{A_n\}$ converges and $\lim_{t \rightarrow x} f(t) = \lim_{t \rightarrow \infty} A_n$.

K22P 1411

- b) Suppose K is compact, and
 - i) $\{f_n\}$ is a sequence of continuous functions on K,
 - ii) $\{f_n\}$ converges pointwise to a continuous function f on K,
 - iii) $f_n(x) \ge f_{n+1}(x)$ for all $x \in K$, $n = 1, 2, 3 \dots$ Then prove that $f_n \rightarrow f$ uniformly on K.
- 8. a) Prove that there exists a real continuous function on the real line which is nowhere differentiable.
 - b) Prove that every uniformly convergent sequence of bounded functions is uniformly bounded.
- 9. Let A be an algebra of real continuous functions on a compact set K. If A separates points on K and if A varnishes at no point of K, then prove that the uniform closure B of A consists of all real continuous functions on K.

Unit – II

- 10. a) Suppose the series ∑[∞]_{n=0} c_nxⁿ converges for |x| < R and define f(x) = ∑[∞]_{n=0} c_nxⁿ, (|x| < R). Then prove that the series ∑[∞]_{n=0} c_nxⁿ converges uniformly on [-R + ∈, R ∈], no matter which ∈ > 0 is chosen. Also prove that the function f is continuous and differentiable in (- R, R) and f'(x) = ∑[∞]_{n=1} nc_nxⁿ⁻¹, |x| < R.
 b) Suppose the series ∑[∞]_{n=0} c_nxⁿ converges for |x| < R and define f(x) = ∑[∞]_{n=0} c_nxⁿ,
 - b) Suppose the series $\sum_{n=0}^{\infty} c_n x^n$ converges for |x| < R and define $f(x) = \sum_{n=0}^{\infty} c_n x^n$, (|x| < R). Then prove that f has derivatives of all orders in (- R, R) and derive the formulas.
- 11. State and prove Parseval's Theorem.
- 12. a) Define Gamma Function. Prove that $\log\Gamma$ is convex on $(0, \infty)$.
 - b) State and prove Stiriling's Formula.

- 13. a) Let r be a positive integer. If a vector space X is spanned by a set of r vectors, then prove that dim $X \le r$.
 - b) Suppose X is a vector space, and dim X = n. Prove that
 - i) A set E of n vectors in X spans X if and only if E is independent.

- ii) X has a basis and every basis consists of n vectors.
- iii) If $1 \le r \le n$ and $\{y_1, y_2, ..., y_r\}$ is an independent set in X then X has a basis containing $\{y_1, y_2, ..., y_r\}$.
- 14. a) Suppose f maps an open set $E \subset R^n$ into R^m . Then prove that $f \in C(E)$ if and only if the partial derivatives $D_j f_j$ exist and are continuous on E for $1 \le i \le m, 1 \le j \le n$.
 - b) Suppose f maps a convex open set E ⊂ Rⁿ into R^m, f is differentiable in E and there is a real number M such that ||f'(x)|| ≤ M for every x ∈ E. Then prove that |f(b) f(a)| ≤ M|b a| for all a ∈ E, b ∈ E.
- 15. State and prove implicit function theorem.

K23P 1411

Reg. No. :

Name :

III Semester M.Sc. Degree (C.B.S.S. – Reg./Supple./Imp.) Examination, October 2023 (2020 Admission Onwards) MATHEMATICS MAT3C14 : Advanced Real Analysis

PART – A

Time : 3 Hours

Max. Marks: 80

Answer four questions from this Part. Each question carries 4 marks.

- 1. Distinguish between pointwise boundedness and uniform boundedness of sequence of functions on a set E.
- 2. Define the limit function of sequence $\{f_n\}$ of functions and show that for

m, n = 1, 2, 3, ..., if
$$S_{m,n} = \frac{m}{m+n}$$
, then $\lim_{n \to \infty} \lim_{m \to \infty} S_{m,n} \neq \lim_{m \to \infty} \lim_{n \to \infty} S_{m,n}$

- 3. Define beta function.
- 4. Show that the functional equation $\Gamma(x + 1) = x\Gamma(x)$ holds if $0 < x < \infty$.
- 5. Prove that a linear operator A on a finite-dimensional vector space X is one-toone if and only if the range of A is all of X.
- 6. State the implicit function theorem.

(4×4=16)

Answer 4 questions from this Part without omitting **any** Unit. **Each** question carries **16** marks.

Unit – I

PART – B

- 7. State and prove the Stone-Weierstrass theorem.
- 8. a) Show that there exists a real continuous function on the real line which is nowhere differentiable.
 - b) If {f_n} is a pointwise bounded sequence of complex functions on a countable set E, then show that the {f_n} has a subsequence {f_{nk}} such that {f_{nk}(x)} converges for every $x \in E$.

K23P 1411

- 9. a) If $\{f_n\}$ and $\{g_n\}$ converge uniformly on a set E, then prove that $\{f_n + g_n\}$ converges uniformly on E.
 - b) If $\{f_n\}$ and $\{g_n\}$ are sequences of bounded functions, then prove that $\{f_n, g_n\}$ converges uniformly on E.
 - c) Suppose {f_n} is a sequence of functions defined on E, and suppose $|f_n(x)| \le M_n$ for $x \in E$ and n = 1, 2, 3, ..., then prove that $\sum f_n$ converges uniformly on E if $\sum M_n$ converges.

Unit – II

- 10. a) Suppose that the series $\sum_{n=0}^{\infty} c_n x^n$ converges for |x| < R, and if $f(x) = \sum_{n=0}^{\infty} c_n x^n$, then prove that the function f is continuous and differentiable in (-R, R), and $f'(x) = \sum_{n=1}^{\infty} nc_n x^{n-1}$ where |x| < R.
 - b) State and prove Taylor's theorem.
- 11. State and prove Parseval's theorem.
- 12. a) If x > 0 and y > 0, then show that $\int_{0}^{1} t^{x-1} (1-t)^{y-1} dt = \frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)}$.
 - b) If f is continuous (with period 2π) and if $\epsilon > 0$, then prove that there is a trigonometric polynomial P such that $|P(x) f(x)| < \epsilon$ for all real x.

- 13. a) Define dimension of a vector space.
 - b) Let r be a positive integer, if a vector space is spanned by a set of r vectors, then prove that dim $X \le r$.
 - c) Show that dim $\mathbb{R}^n = n$.
- 14. a) Define a continuously differentiable mapping.
 - b) Suppose f maps an open set $E \subset \mathbb{R}^n$ into \mathbb{R}^m . Then prove that $f \in \mathscr{C}|(E)$ if and only if the partial derivatives $D_j f_i$ exist and are continuous on E for $1 \le i \le m$, $1 \le j \le m$.
- 15. State and prove inverse function theorem. (4×16=64)

K22P 1412

Reg. No. :

Name :

III Semester M.Sc. Degree (CBSS – Reg./Sup./Imp.) Examination, October 2022 (2019 Admission Onwards) MATHEMATICS MAT 3 E01 : Graph Theory

Time : 3 Hours

Max. Marks : 80

Answer any four questions from this Part. Each question carries 4 marks. (4×4=16)

- 1. Explain the personal assignment problem.
- 2. Prove that $\alpha + \beta = v$.
- 3. If $\delta > 0$, then prove that $\alpha' + \beta' = v$.
- 4. Show that the Petersen graph is 4-edge-chromatic.
- 5. Show that $K_5 e$ is planar for any edge e of K_5 .
- 6. Let u and v be two distinct vertices of the graph G. Then prove that a set S of vertices of G is u-v separating if and only if every u-v path has at least one internal vertex belonging to S.

PART – B

Answer **any four** questions from this Part without omitting **any** Unit. **Each** question carries **16** marks. (4×16=64)

UNIT – I

- 7. a) Prove that if a simple graph G contains no K_{m+1} , then G is degree majorised by some complete m-partite graph H. Also prove that, if G has the same degree sequence as H, then G \approx H.
 - b) Show that a connected α -critical graph has no cut vertices.

K22P 1412

- 8. a) For any graph G, prove that $\chi \leq \Delta + 1$.
 - b) If G is a connected simple graph and is neither an odd cycle nor a complete graph, then prove that $\chi \leq \Delta$.
- 9. a) If G is simple, then prove that $\pi_k(G) = \pi_k(G e) \pi_k(G.e)$ for any edge e of G.
 - b) State and prove Dirac theorem on k-critical graphs.

UNIT – II

- 10. If G is simple, then prove that either $\chi' = \Delta$ or $\chi' = \Delta + 1$.
- 11. a) Prove that, inner (outer) bridges avoid one another.
 - b) Prove that an inner bridge that avoids every outer bridge is transferable.
- 12. Prove that the following three statements are equivalent :
 - a) every planar graph is 4-vertex-colourable;
 - b) every plane graph is 4-face-colourable;
 - c) every simple 2-edge-connected 3-regular planar graph is 3-edge-colourable.

UNIT – III

13. State and prove Menger's theorem.

- 14. a) Let G be a bipartite graph with bipartition (X, Y). Then prove that G contains a matching that saturates every vertex in X if and only if $|N(S)| \ge |S|$ for all $S \subseteq X$.
 - b) If G is a k-regular bipartite graph with k > 0, then G has a perfect matching.
- 15. a) Prove that every 3-regular graph without out edges has a perfect matching.
 - b) Let *l* be a feasible vertex labelling of G. If G_i contains a perfect matching M*, then prove that M* is an optimal matching of G.

K23P 1412

Reg. No. :

Name :

III Semester M.Sc. Degree (CBSS – Reg./Supple./Imp.) Examination, October 2023 (2020 Admission Onwards) MATHEMATICS MAT3E01 : Graph Theory

Time : 3 Hours

Max. Marks: 80

(4×4=16)

PART – A

Answer any 4 questions. Each question carries 4 marks.

- 1. Define independent set of a graph G. Prove that a set $S \subset V$ is an independent set of G if and only if S V is a covering of G.
- 2. If $\delta > 0$, then prove that $\alpha' + \beta' = v$ where α' and β' where α' (G) and β' (G) are the edge independence number and edge covering number of G respectively.
- 3. Show that the Peterson graph is 4-edge chromatic.
- 4. Prove that a graph G is embeddable in the plane if and only if it is embeddable on the sphere.
- Prove that if G is a k-regular bipartite graph with k > 0, then G has a perfect matching.
- 6. Prove that a simple graph G is connected if and only if, given any pair of distinct vertices u and v of G, there are at least n internally disjoint paths from u to v.

PART – B

Answer **any 4** questions without omitting any **unit**. **Each** question carries **16** marks.

UNIT – I

- 7. a) State and prove Ramsey's theorem.
 - b) Let $(S_1, S_2,...,S_n)$ be any partition of the set of integers 1, 2, ..., r_n . Then, prove that for some i, S_i contains three integers x, y and z satisfying the equation x + y = z.
- 8. a) If {x₁, x₂, ..., x_n} is a set of diameter 1 in the plane, then prove that the maximum possible number of pairs of points at distance greater than

 $1/\sqrt{2}$ is [n²/3]. Also prove that for each n, there is a set {x₁, x₂, ..., x_n} of diameter 1 with exactly [n²/3] pairs of points at distance greater than $1/\sqrt{2}$.

- b) If G is simple and contains no K_{m+1} , then prove that $\varepsilon(G) \leq \varepsilon(T_{m,v})$. Also prove that $\varepsilon(G) = \varepsilon(T_{m,v})$ only if $G = T_{m,v}$.
- 9. a) If G is k-critical, then prove that $\delta \ge k 1$.
 - b) Show that every k-chromatic graph has at least k vertices of degree at least k 1.
 - c) Prove that in a critical graph, no vertex is a clique.

RUNIT-1

- 10. a) If two bridges overlap, then show that either they are skew or else they are equivalent 3-bridges.
 - b) Show that $K_{3,3}$ is non-planar.
 - c) Prove that an inner bridge that avoids every outer bridge is transferable.
- a) Let G be a connected graph that is not an odd cycle. Then prove that G has a 2-edge colouring in which both colors are represented at each vertex of degree at least two.
 - b) If G is bipartite, then prove that $X' = \Delta$.

-3-

- 12. a) Let M and N be disjoint matchings of G with |M| > |N|. Prove that there are disjoint matchings M' and N' of G such that |M'| = |M| 1, |N'| = |N| + 1 and $M' \cup N' = M \cup N$.
 - b) Show that a graph is planar if and only if each of its blocks is planar.

UNIT – III

- 13. a) Prove that a matching M in G is a maximum matching if and only if G contains no M-augmenting path.
 - b) In a bipartite graph, show that the number of edges in a maximum matching is equal to the number of vertices in a minimum covering.
- 14. Prove that G has a perfect matching if and only if $o(G S) \le |S|$ for all $S \subset V$.

FRANUR

15. State and prove Menger's theorem.

(4×16=64)