K22P 0189

Reg. No. :

Name :

II Semester M.Sc. Degree (C.B.S.S. – Reg./Supple./Imp.) Examination, April 2022 (2018 Admission Onwards) MATHEMATICS MAT 2C 06 – Advanced Abstract Algebra

Time : 3 Hours

Max. Marks : 80

Answer any four questions. Each question carries 4 marks.

- 1. Prove that $\mathbb{Z}[i]$ is an Euclidean domain.
- 2. Construct a field of four elements by showing $x^2 + x + 1$ is irreducible in $\mathbb{Z}_2[x]$.

PART – A

- 3. Show that it is not always possible to construct with straight edge and compass, the side of a cube that has double the volume of original cube.
- 4. Show that if F is a finite field of characteristic p, then the map $\sigma_p: F \to F$ defined by $\sigma_p(a) = a^p$, for $a \in F$, is an automorphism.
- 5. Prove that there exists only an unique algebraic closure of a field up to isomorphism.
- 6. If E is a finite extension of F, Then prove that {E : F} divides [E : F]. (4×4=16)

PART – B

Answer any 4 questions without omitting any Unit. Each question carries 16 marks.

UNIT – I

7.	a)	State and prove Kronecker's theorem.	8
	b)	Prove that $\mathbb{Q}(\pi) \cong \mathbb{Q}(x)$, where $\mathbb{Q}(x)$ is the field of rational numbers over \mathbb{Q} .	4
	c)	Prove that $\mathbb{R}[x]/\langle x^2+1 \rangle \cong \mathbb{R}$ (i) $\cong \mathbb{C}$.	4
8.	a)	Prove that if D is a UFD, then D[x] is a UFD.	8
	b)	Show that not every UFD is a PID.	3
	c)	Express $18x^2 - 12x + 48$ in \mathbb{Q} [x] as a product of its content with a primitive polynomial.	5
		Ρ.	т.о.

6

10

8

8

5

4

7

4

6

6

9. a) Prove that for a Euclidean domain with Euclidean norm v, v(1) is minimal among all v (a) for non-zero $a \in D$, and also $u \in D$ is a unit if and only if, v(u) = v(1).b) Let p the an odd prime in \mathbb{Z} . Then prove that $p = a^2 + b^2$ for a, $b \in \mathbb{Z}$, if and only if $p \equiv 1 \pmod{p}$. UNIT – II 10. a) Prove that there exists finite of pⁿ elements for every prime power pⁿ. b) Let p be a prime and $n \in \mathbb{Z}^+$. Prove that if E and E' are fields of order p^n , then

- 11. a) Find the degree and basis for $\mathbb{Q}(\sqrt[3]{5},2)$ and $\mathbb{Q}(\sqrt{2}+\sqrt{3})$ over \mathbb{Q} .
 - b) Prove in detail that $\mathbb{Q}(\sqrt{3} + \sqrt{7}) = \mathbb{Q}(\sqrt{3}, \sqrt{7})$.
 - c) Define algebraic closure of a field and prove that, a field F is algebraically closed if and only if, every non constant polynomial in F[x] factors in F[x]into linear factors.
- 12. a) Describe the group $G(\mathbb{Q}\sqrt{2},\sqrt{3}/\mathbb{Q})$.
 - b) Let F be a field and let α , β are algebraic over F. Then prove that F (α) \cong F(β) if and only if α and β are conjugates over F.
 - c) Let $\{\sigma_i / i \in I\}$ be the collection of automorphisms of a field \overline{F} . Then prove that the set $E_{\{\sigma_i\}}$ of all $a \in E$ left fixed by every σ_i for $i \in I$, forms a subfield of E.

UNIT – III

	Prove that a finite separable extension of a field is a simple extension.	8
b)	Every finite field is perfect.	8
14. a)	Show that $[E : F] = 2$, then E is splitting field over F.	5
b)	Show that if $E \leq \overline{F}$, is a splitting field over F, then every irreducible polynomial in F[x] having a zero in E splits in E.	6
c)	Find the splitting field and its degree over $\mathbb Q$ of the polynomial $(x^2 - 2) (x^3 - 2)$ in $\mathbb Q$ [x].	5
	Let K be a finite extension of degree n of a finite field F of p ^r elements. Then G(K/F) is cyclic of order n and is generated by σ_p^r , for $\alpha \in K$, $\sigma_p^r(\alpha) = \alpha^{p^r}$. State isomorphism extension theorem.	8 3
c)	Let $f(x)$ be irreducible in F[x]. Then prove that all zeros in $f(x)$ in \overline{F} has same multiplicity.	5

K22P 0189

 $E \cong E'$.

K23P 0498

Reg. No. :

Name :

II Semester M.Sc. Degree (C.B.S.S. – Reg./Supple./Imp.) Examination, April 2023 (2019 Admission Onwards) MATHEMATICS MAT 2C 06: Advanced Abstract Algebra

PART

Time : 3 Hours

Max. Marks: 80

Answer any 4 questions. Each question carries 4 marks.

- 1. Find $\left[Q\left(\sqrt{2}, \sqrt{3}\right) : Q \right]$.
- 2. Find the primitive 5^{th} root of unity in Z_{11} .
- 3. Distinguish between primes and irreducibles of an integral domain.
- 4. Is Z[i] is an integral domain ?
- 5. What is the order of $G(Q(\sqrt[3]{2})/Q)$?
- 6. Show that $\sqrt{1+\sqrt{5}}$ is algebraic over Q.

Answer 4 questions without omitting any Unit. Each question carries 16 marks.

Unit – I

PART - B

7. a) Prove that every PID is a UFD.	7
b) Prove that $Z\left[\sqrt{-5}\right]$ is an integral domain but not a UFD.	9
8. a) State and prove Kronecker's theorem.	8
b) How could we construct a field of 4 elements ?	8

K23P 0498						
b)	State and prove Gauss's Lemma. An ideal in a PID is maximal if and only if p is irreducible. Prove that every Euclidian domain is PID.	6 5 5				
Unit – II						
-	If α and β are constructible real numbers, then $\alpha + \beta$, $\alpha - \beta$, $\alpha\beta$ and α/β , if $\beta \neq 0$. If E is a finite of characteristic P, then E contains exactly P ⁿ elements for some positive n.	12 4				
-	Prove that trisecting an angle is impossible. Prove that a finite field $GF(P^n)$ of P^n elements exists for every prime power P^n .	8				
	State and prove Conjugation isomorphism theorem. Define Frobenius automorphism.Also prove that $F_{\left\{ \sigma_p \right\}} \cong Z_p$.	10 6				
	Unit – III					
13. a)	A Field E, where $F \le E \le K$, is a splitting field over F if only if every automorphism of \overline{F} leaving F fixed maps E onto itself and thus induces an automorphism of F leaving F fixed.	12				
b)	Let $f(x)$ be irreducible in $F[x]$. Then prove that all zeros of $f(x)$ in \overline{F} have the same multiplicity.	4				
	Prove that every finite field is perfect. Find the splitting field of $x^3 - 2$ over Q.	12 4				
,	State the main theorem of Galois Theory. State and prove Primitive Element theorem.	6 10				

K22P 0190

Reg. No. :

Name :

II Semester M.Sc. Degree (CBSS – Reg./Supple./Imp.) Examination, April 2022 (2018 Admission Onwards) MATHEMATICS MAT 2C 07 : Measure and Integration

Time : 3 Hours

Max. Marks : 80

Answer any four questions from this Part. Each question carries 4 marks.

PART – A

- 1. Show that if $m^*(E) = 0$, then E is measurable.
- 2. Show that there exists an uncountable set with measure zero.
- 3. Give an example of a function which is Lebesque integrable but not Riemann integrable.
- 4. Prove that if f and g are integrable functions, then f + g is also integrable.
- 5. Define $L^{p}(\mu)$ and prove that if f, $g \in L^{p}(\mu)$ and a, b are constants, then $af + bg \in L^{p}(\mu)$.
- 6. Define integral of a measurable simple function with respect to a measure μ .

(4×4=16)

PART – B

RUNIVE

Answer **any four** questions from this Part without omitting any Unit. **Each** question carries **16** marks.

Unit – I

- 7. a) Prove that every interval is measurable.
 - b) Prove that the class of all Lebesque measurable functions is a σ algebra.
 - c) Show that for any measurable function f and g.
 - ess.sup. (f + g) \leq ess.sup.f + ess.sup.g and give an example of strict inequality.

K22P 0190

- 8. a) Construct a non-measurable set.
 - b) Let f be a measurable function and let f = g a.e, then prove that g is measurable.
- 9. a) State and prove Fatuous Lemma.
 - b) Show that $\int_{1}^{\infty} \frac{dx}{x} = \infty$.

Unit – II

- 10. a) State and prove Lebesque Dominated convergence theorem.
 - b) Let f be a bounded measurable function defined on the finite interval

(a, b). Show that
$$\lim_{\beta \to \infty} \int_{\alpha} f(x) \sin \beta x \, dx = 0$$
.

- 11. a) Let μ^* be an outer measure of H(R) and let S^{*} denote the class of μ^* measurable sets. Then prove that S^{*} is a σ ring and μ^* restricted to S^{*} is a complete measure.
 - b) Define a σ finite measure. Show that if μ is a σ finite measure on R, then the extension $\overline{\mu}$ of μ to S^{*} is also σ finite.
- 12. a) Show that Lebesque measure is a σ finite measure and complete.
 - b) If μ is a σ finite measure on a ring R, then prove that it has a unique extension to the σ ring S(R).

Unit – III

- 13. a) Let $[X, S, \mu]$ be a measure space and f a non-negative measurable function. Then prove that $\varphi(E) = \int_E f d\mu$ is a measure on the measurable space [X, S]. Also prove that if $\int f d\mu < \infty$, then $\forall \in > 0, \exists \delta > 0$ such that, if $A \in S$ and $\mu(A) < \delta$, then $\varphi(A) < \delta$.
 - b) Define $L^\infty(X,\,\mu)$ and prove that $L^\infty(X,\,\mu)$ is a vector space over the real numbers.
- 14. a) State and prove Hölder's inequality.
 - b) State and prove Minkowski's inequality.
- 15. a) If $1 \le p \le \infty$ and $\{f_n\}$ is a sequence in $L^p(\mu)$ such that $\|f_n f_m\|_p \to 0$ as m, $n \to \infty$, then prove that there exists a function f and a subsequence $\{n_i\}$ such that $\lim f_{n_i} = f$ a.e. Also prove that $f \in L^p(\mu)$ and $\lim \|f_n f\|_p = 0$.
 - b) Prove that $L^{\infty}(\mu)$ is a complete metric space.

(4×16=64)

K23P 0499

Reg. No. :

Name :

II Semester M.Sc. Degree (CBSS – Reg./Supple./Imp.) Examination, April 2023 (2019 Admission Onwards) MATHEMATICS MAT 2C 07 : Measure and Integration

PART -

Time : 3 Hours

Max. Marks: 80

Answer any 4 questions. Each question carries 4 marks.

- 1. Show that every countable set has measure zero.
- 2. Define measurable function. Show that every continuous functions are measurable.
- 3. Let f(x) is function defined on [0, 2] defined by : f(x) = 1 for x rational, if x is irrational, f(x) = -1, then find $\int_0^2 f dx$.
- 4. If A and B are disjoint measurable sets, then show that $\int_{A \cup B} f dx = \int_A f dx + \int_B f dx$.
- 5. Show that $L^{\infty}(X, \mu)$ is a vector space over the real numbers.
- 6. State and prove Minkowski's inequality.

PART – B

Answer any 4 questions without omitting any Unit . Each question carries 16 marks.

Unit – I

- 7. a) Prove that Every interval is measurable.
 - b) Define Borel sets. Show that every Borel set is measurable.
- 8. a) Show that collection of measurable function forms a vector space over real numbers.
 - b) Show that Borel set is a proper subset of Lebesgue Measurable sets.
- 9. a) State and prove Fatou's Lemma.
 - b) Let f and g be non-negative measurable functions. Then show that $\int f dx + \int g dx = \int (f + g) dx$.

Unit – II

- 10. a) State and prove Lebesgue's Dominated Convergence theorem.
 - b) Let f be a bounded function defined on the finite interval [a, b], then prove that f is Riemann integrable over [a, b] if and only if it is continuous a.e.
- 11. a) Let μ^* be an outer measure on $\mathcal{H}(\mathcal{R})$ and let S^* denote the class of μ^* measurable sets. Then prove that S^* is a σ ring and μ^* restricted to S^* is a complete measure.
 - b) If μ is a σ -finite measure on a ring \mathcal{R} , then show that it has a unique extension to the σ -ring $S(\mathcal{R})$.
- 12. a) Let f be bounded and measurable on a finite interval [a, b] and let $\in > 0$, then show that there exist a continuous function g such that g vanishes outside a finite interval and $\int_a^b |f g| dx < \epsilon$.
 - b) Define σ -finite and complete measure on a ring \mathcal{R} . Also show that Lebesgue measure m defined on \mathcal{M} , the class of measurable sets of \mathbb{R} is σ -finite and complete.

Unit – III

- 13. a) Define L^p Space for $1 \le p \le \infty$. Also show that if $\mu(X) < \infty$ and $0 then show that L^q(<math>\mu$) \subseteq L^p(μ)[.]
 - b) State and prove Holder's Inequality. When does its equality occurs ?
- 14. a) Let f_n be a sequence of measurable functions, $f_n : X \to [0, \infty]$, such that $f_n(x) \uparrow$ for each x and let $f = \lim f_n$ then prove that $\int f dx = \lim \int f_n d\mu$.
 - b) Let [[X, S, μ]] be a measure space and f a non-negative measurable function. Then prove that $\phi(E) = \int_E f d\mu$ is a measure on the measurable space [[X, S]]. Also show that if $\int f d\mu < \infty$ then $\forall \in > 0, \exists \delta > 0$ such that if $A \in S$ and $\mu(A) < \delta$, then $\phi(A) < \in$.
- 15. a) If $1 \le p < \infty$ and $\{f_n\}$ is a sequence in $L^P(\mu)$ such that $||f_n f_m||_p \to 0$ as $n, m \to \infty$ then show that there exists a function f and a sequence $\{n_i\}$ such that $\lim f_{n_i} = f$ a.e. and $f \in L^p(\mu)$.
 - b) Let f_n be a sequence in $L^\infty(\mu)$ such that $||f_n f_m|| \to 0$ as n, $m \to \infty$. Then show that there exists a function f such that lim $f_n = f$ a.e, $f \in L^\infty(\mu)$ and lim $||f_n f||_\infty = 0$.

K23P 0500

Reg. No. :

II Semester M.Sc. Degree (CBSS – Reg./Supple./Imp.) Examination, April 2023 (2019 Admission Onwards) MATHEMATICS MAT 2C08 : Advanced Topology

Time : 3 Hours

Max. Marks: 80

PART – A

Answer any 4 questions. Each question carries 4 marks.

- 1. Let $X = \{0\} \cup \left\{\frac{1}{n} : n \in \mathbb{N}\right\}$.
 - a) Define a topology T_1 on X such that (X, T_1) is a compact space. Justify your answer.
 - b) Define a topology T_2 on X such that (X, T_2) is not compact space. Justify your answer.
- 2. Prove or disprove : Every compact subset of a topological space is closed.
- 3. Prove that complete regularity is a topological property.
- 4. Give an example of Lindeloff space which is not compact.
- 5. Define Hilbert cube. Prove that a Hilbert cube is metrizable.
- 6. Prove that a normed space is completely regular.

K23P 0500

PART – B

Answer **any 4** questions without omitting **any** Unit. **Each** question carries **16** marks.

Unit – I

- 7. a) Let (X, T) be a T₁ space. Prove that X is a countably compact if and only if it has the Bollzano-Weierstrass property.
 - b) Show that the condition that X is a T_1 space in part (a) is necessary. Justify your claim.
- 8. Prove that the product of any finite number of compact spaces is compact.
- 9. a) Prove or disprove : Local compactness is a topological property.
 - b) Prove that every closed subspace of a locally compact Hausdorff space is locally compact.
 - c) Give an example of a metric space which is locally compact but not sequentially compact.

Unit – II

- 10. a) Prove that every finite set in a T_1 space is closed.
 - b) Prove that every second countable space is Lindeloff.
 - c) Is the converse of part (b) true ? Justify your claim.
- 11. a) Define a completely normal topological space. Prove that a T_1 space (X, T) is completely normal iff every subspace of X is normal.
 - b) Prove that every second countable regular space is normal.
- 12. a) Let $\{(x_{\alpha}, \mathcal{T}_{\alpha}) : \alpha \in \Lambda\}$ be a family of topological spaces and let $X = \prod_{\alpha \in \Lambda} X_{\alpha}$. Prove that X is completely regular iff $(X_{\alpha}, \mathcal{T}_{\alpha})$ is completely regular for each $\alpha \in \Lambda$.
 - b) Let (X, T) be a topological space with a dense subset D and a closed, relatively discrete subset C such that $P(D) \leq C$. Then prove that (X, T) is not normal.
 - c) Give an example of a Lindeloff space that is not separable. Justify your answer.

Unit – III

- 13. a) Prove that a T_1 space (X, T) is normal if and only if whenever A is a closed subset of X and f : A \rightarrow [– 1, 1] is a continuous function, then there is a continuous function F : X \rightarrow [– 1, 1] such that F|_A = f.
 - b) Using (a) part, state and prove Uryshon lemma.
- 14. State and prove Alexander sub base theorem.
- 15. a) State Urysohn metrization theorem. Using the Urysohn Metrization theorem prove the following :

Let (X, d) be a compact metric space, let (Y, \mathcal{U}) be a Hausdorff space and let f : X \rightarrow Y is a continuous function that maps X onto Y. Prove that (Y, \mathcal{U}) is metrizable.

b) Let (X, T) and (Y, U) be topological spaces. Then show that homotopy (≃) is an equivalence relation on C(X, Y), the collection of continuous functions that maps X into Y.

K23P 0501

Reg. No. :

Name :

II Semester M.Sc. Degree (C.B.S.S. – Reg./Supple./Imp.) Examination, April 2023 (2019 Admission Onwards) MATHEMATICS MAT2C09 : Foundations of Complex Analysis

Time : 3 Hours

Max. Marks: 80

Answer any 4 questions. Each question carries 4 marks.

- 1. Evaluate the integral $\int_{\gamma} \frac{dz}{z^2 + 1}$, where $\gamma(t) = 2e^{it}$, $0 \le t \le 2\pi$.
- 2. Define index of a closed rectifiable curve with respect to a point. Illustrate with example.

3. Determine the nature of the singularity of the function $f(z) = \frac{\log(z+1)}{z^2}$.

- 4. Find the residue of $f(z) = \tan z$ at $z = \frac{\pi}{2}$.
- 5. Define pole and essential singularity, giving one example of each.
- 6. State Arzela-Ascoli theorem in space of continuous functions.

PART – B

Answer **any 4** questions without omitting any Unit. **Each** question carries **16** marks.

Unit – I

- 7. a) If G is a region and $f : G \to \mathbb{C}$ is an analytic function such that there is a point a in G with $|f(a)| \ge |f(z)|$ for all z in G. Prove that f is constant.
 - b) If G is simply connected and $f:G\to \mathbb{C}$ is analytic in G. Prove that f has primitive in G.

K23P 0501

- a) Let γ be a closed rectifiable curve in C. Prove that n(γ, a) is constant in each component of C − γ.
 - b) Evaluate the integral $\int_{\gamma} \frac{(e^z e^{-z})dz}{z^n}$, where n is a positive integer and $\gamma(t) = e^{it}$, $0 \le t \le 2\pi$.
- 9. State and prove Goursat's theorem.

Unit – II

- 10. a) Find the Laurent series expansion of $f(z) = \frac{1}{z(z-1)(z-2)}$ in ann(0, 1, 2).
 - b) Let z = a be an isolated singularity of f and let $f(z) = \sum_{m=0}^{\infty} a_n(z-a)^n$ be its Laurent expansion in ann(a, 0, R). Prove that z = a is a pole of order m if and only if $a_m \neq 0$ and $a_n = 0$ for $n \leq -(m + 1)$.
- 11. a) Evaluate the integral $\int_{0}^{\pi} \frac{d\theta}{a + \cos \theta}$, a > 1 by the method of residues.
 - b) State and prove Argument principle.
- 12. Let $D = \{z : |z| < 1\}$ and suppose f is analytic on D with $|f(z)| \le 1$ for z in D and f(0) = 0. Prove that $|f'(0)| \le 1$ and $|f(z)| \le |z|$ for all z in the disk D.

Unit – III

- 13. a) Prove that $C(G, \Omega)$ is a complete metric space.
 - b) If $\mathcal{F} \subset C$ (G, Ω) is equicontinuous at each point of G. Prove that \mathcal{F} is equicontinuous over each compact subset of G.
- 14. a) State and prove Hurwitz's theorem.
 - b) Let $\text{Rez}_n > -1$, prove that the series $\sum_{n=1}^{\infty} \log(1 + z_n)$ converges absolutely if and only if the series $\sum_{n=1}^{\infty} z_n$ converges absolutely.
- 15. State and prove Weierstrass Factorization theorem.

K24P 0864

Reg. No. :

Name :

Second Semester M.Sc. Degree (C.B.S.S. – Supple. (One Time Mercy Chance)/Imp.) Examination, April 2024 (2017 to 2022 Admissions) MATHEMATICS MAT 2C 09 : Foundations of Complex Analysis

Time : 3 Hours

Attempt any four questions from this part. Each question carries 4 marks :

- 1. Given that γ and σ are closed rectifiable curves having the same initial points. Prove that $n(\gamma + \sigma, a) = n(\gamma, a) + n(\sigma, a)$ for every $a \notin \{\gamma\} \cup \{\sigma\}$.
- 2. Let f be analytic on B(0, 1) and suppose $|f(z)| \le 1$ for |z| < 1. Show that $|f'(0)| \le 1$.
- 3. Does the function $f(z) = z^2 \sin\left(\frac{1}{z^2}\right)$ has an essential singularity at z = 0? Justify your answer.
- 4. Using residue Theorem, prove that $\int_0^\infty \frac{1}{1+x^2} dx = \frac{\pi}{2}$.
- 5. Define the set $C(G, \Omega)$ and show that it is non-empty.
- 6. State the Weierstrass Factorization theorem.

PART – B

Answer **any four** questions from this part without omitting any Unit. **Each** question carries **16** marks :

Unit – I

- 7. a) Prove the following : If G is simply connected and f : $G \rightarrow C$ is analytic in G then f has a primitive in G.
 - b) State and prove The Open Mapping Theorem.

K24P 0864

- 8. State and prove the Third Version of Cauchy's Theorem.
- 9. Prove the following : let G be a connected open set and let $f : G \to C$ be an analytic function. Then the following conditions are equivalent.
 - a) $f \equiv 0$;
 - b) there is a point a in G such that $f^n(a) = 0$ for each $n \ge 0$;
 - c) $\{z \in G : f(z) = 0\}$ has a limit point in G.
- 10. a) Show that for a > 1, Show that $\int_0^{\pi} \frac{d\theta}{a + \cos \theta} = \frac{\pi}{\sqrt{a^2 1}}$. b) State and prove the Residue theorem.
- 11. State and prove the Laurent Series Development.
- 12. Prove the following :
 - a) If |a| < 1 then $\phi_a(z) = \frac{z-a}{1-\overline{a}z}$ is a one-one map of $D = \{z : |z| < 1\}$ on to itself; the inverse of ϕ_a is ϕ_{-a} . Furthermore, ϕ_a maps ∂D on to ∂D , $\phi'_a(0) = 1 - |a|^2$ and $\phi'_a(a) = (1 - |a|^2)^{-1}$.
 - b) Let $f(z) = \frac{1}{z(z-1)(z-2)}$; give the Laurent series of f(z) in each of the following annuli :

VUR UNI

- i) ann(0; 0, 1),
- ii) ann (0; 1, 2),
- iii) ann (0 ; 2, ∞).

Unit – III

- 13. a) Prove the following : If G is open in C then there is a sequence $\{K_n\}$ of compact subsets of G such that $G = \bigcup_{n=1}^{\infty} K_n$. Moreover the sets K_n can be chosen to satisfy the following conditions :
 - i) $k_n \subset int K_{n+1}$.
 - ii) $K \subset G$ and K is compact implies $K \subset K_n$ for some n.
 - iii) Every component of $C_{\infty} K_n$ contains a component of $C_{\infty} G$.
 - b) State and prove Hurwitz's theorem.

- 14. a) With the usual notations, prove that $|1 E_p(z)| \le |z|^{p+1}$ for $|z| \le 1$ and $p \ge 0$.
 - b) Discuss the convergence of the infinite product $\prod_{n=1}^{\infty} \frac{1}{n^p}$ for p > 0.
- 15. a) Show that $\prod (1+z_n)$ converges absolutely iff $\prod (1+|z_n|)$ converges.
 - b) Prove the following : If $\text{Rez}_n > 0$ then the product $\prod z_n$ converges absolutely iff the series $\Sigma(z_n 1)$ converges absolutely.
 - c) Prove the following : Let $\text{Rez}_n > 0$ for all $n \ge 1$. Then $\prod_{n=1}^{\infty} z_n$ converges to a non zero number iff the series $\sum_{n=1}^{\infty} \log z_n$ converges.

K22P 0193

Reg. No. :

Name :

II Semester M.Sc. Degree (CBSS – Reg./Supple./Imp.) Examination, April 2022 (2018 Admission Onwards) MATHEMATICS

MAT 2C10 : Partial Differential Equations and Integral Equations

Time : 3 Hours

Max. Marks : 80

Answer any four questions from this Part. Each question carries 4 marks.

- 1. Eliminate the arbitrary function F from $z = F\left(\frac{xy}{z}\right)$ and find the corresponding partial differential equation.
- 2. Find the general solution of yzp + xzq = xy.
- 3. Show that the solution of the Dirichlet problem if it exists is unique.
- 4. Find the Riemann function of the equation $Lu = u_{xy} + \frac{1}{4}u = 0$.
- 5. Transform the problem y'' + xy = 1, y(0) = 0, y(l) = 1 into an integral equation.
- Prove that the characteristic numbers of a Fredholm equation with a real symmetric kernel are all real. (4×4=16)

PART – B

Answer **four** questions from this Part, without omitting **any** Unit. **Each** question carries **16** marks.

Unit – 1

7. a) Show that the Pfaffian differential equation $\overrightarrow{X} \cdot \overrightarrow{dr} = P(x, y, z)dx +$

Q(x, y, z)dy + R(x, y, z)dz = 0 is integrable if and only if X .curl X = 0.

b) Show that ydx + xdy + 2zdz = 0 is integrable and find its integral.

K22P 0193

- 8. a) Find a complete integral of $z^2 pqxy = 0$ by Charpits method.
 - b) Solve $u_x^2 + u_y^2 + u_z = 1$ by Jacobi's method.
- 9. a) Find a complete integral of the equation $(p^2 + q^2) x = pz$ and the integral surface containing the curve C : $x_0 = 0$, $y_0 = s^2$, $z_0 = 2s$.
 - b) Solve $xz_y yz_x = z$ with the initial condition $z(x, 0) = f(x), x \ge 0$.

Unit – 2

- 10. a) Reduce the equation $u_{xx} + 2u_{xy} + 17u_{yy} = 0$ into canonical form.
 - b) Derive d'Alembert's solution of one dimensional wave equation.
- 11. a) Solve $y_{tt} C^2 y_{xx} = 0, 0 < x < 1, t > 0.$

$$y(0, t) = y(1, t) = 0$$

 $y(x, 0) = x(1 - x), 0 \le x \le 1$

 $y_{t}(x, 0) = 0, 0 \le x \le 1$

- b) State and prove Harnack's theorem.
- 12. a) Solve the differential equation corresponding to heat conduction in a finite rod.
 - b) Prove that the solution u(x, t) of the differential equation
 - $u_t ku_{xx} = F(x, t), 0 < x < l, t > 0$ satisfying the initial condition
 - $u(x, 0) = f(x), 0 \le x \le l$ and the boundary conditions

 $u(0, t) = u(l, t) = 0, t \ge 0$ is unique.

Unit – 3

13. a) Solve y'' = f(x), y(0) = y(l) = 0.

b) Solve
$$x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + (\lambda x^2 - 1)y = 0$$
 with $y(0) = 0, y(1) = 0$.

-3-

- 14. a) If y_m , y_n are characteristic functions corresponding to different characteristic numbers λ_m , λ_n of $y(x) = \lambda_0^1 K(x,\xi) y(\xi) d\xi$, then if K (x, ξ) is symmetric. Prove that y_m and y_n are orthogonal over (a, b).
 - b) Solve the integral equation $y(x) = f(x) + \lambda \int_{0}^{1} (1 3x\xi)y(\xi) d\xi$ and discuss all its possible cases.
- 15. a) Describe the iterative method for solving Fredholm equation of second kind.
 - b) Find the iterated Kernels $K_2(x, \xi)$ and $K_3(x, \xi)$ associated with $K(x, \xi) = |x - \xi|$ in the interval [0, 1]. (4×16=64)

K23P 0502

Reg. No. :

Name :

II Semester M.Sc. Degree (C.B.S.S. – Reg./Supple./Imp.) Examination, April 2023 (2019 Admission Onwards) MATHEMATICS

MAT 2C 10 : Partial Differential Equations and Integral Equations

Time : 3 Hours

Max. Marks: 80

Answer any 4 questions. Each question carries 4 marks.

- 1. Eliminate the arbitrary function F from the equation $F(z xy, x^2 + y^2)$ and find the corresponding Partial differential equation.
- 2. Show that $z = ax + \frac{y}{a} + b$ is complete integral of pq = 1.
- 3. State and prove maximum principle for harmonic function.
- 4. Prove that the solution of Neumann problem is unique up to the addition of a constant.
- 5. Define Fredholm integral equation of second kind and give an example.
- 6. Solve the integral equation $y(x) = 1 + \lambda \int_0^1 (1 3x\xi) y(\xi) d\xi$ by iterative method.

PART - B

Answer any 4 questions without omitting any Unit. Each question carries 16 marks.

Unit – I

- 7. a) Find the general integral of the equation $y^2p - xyq = x(z - 2y).$
 - b) Prove that the equations f = xp yq x = 0, $g = x^2p + q xz = 0$ are compatible and find a one parameter family of common solutions.
- 8. a) Find the complete integral of $(p^2 + q^2)y qz = 0$ by Charpit's method.
 - b) Solve the PDE by Jacobi's method $z^2 + zu_x - u_x^2 - u_y^2 = 0.$

K23P 0502

- 9. a) Find the integral surface of the equation $(2xy 1)p + (z 2x^2)q = 2(x yz)$ which passes through the line $x_0(s) = 1$, $y_0(s) = 0$ and $z_0(s) = s$.
 - b) Find the characteristic strips of the equation xp + yq = pq where the initial curve is $c: z = \frac{x}{2}, y = 0$.

- 10. a) Reduce the equation $u_{xx} 4x^2u_{yy} = \frac{1}{x}u_x$ into a canonical form.
 - b) Derive d' Alemberts solution of wave equation.
- 11. a) Solve $y_{tt} c^2 y_{xx} = 0, 0 < x < 1, t > 0$ y(0, t) = y(1, t) = 0 $y(x, 0) = x(1 - x), 0 \le x \le 1$ $y_t(0, t) = 0, 0 \le x \le 1$
 - b) Prove that solution of Dirichlet problem is stable.
- 12. a) Solve the Dirichlet problem for a circle.
 - b) Solve the heat conduction problem in a finite rod.

Unit – III

- 13. a) Transform the boundary value problem $\frac{d^2y}{dx^2} + \lambda y = 0$, y(0) = 0, y(l) = 0 to an integral equation.
 - b) Show that the characteristic function of the symmetric Kernel corresponding to distinct characteristic numbers are orthogonal.
- 14. a) Using Green's function, solve the boundary value problem y'' + xy = 1, y(0) = 0, y(l) = 1.
 - b) Show that any solution of the integral equation $y(x) = \lambda \int_0^1 (1 3xy)y(\xi) d\xi + F(x)$ can be expressed as the sum of F(x) and some linear combination of the characteristic functions.
- 15. a) Show that the integral equation $y(x) = 1 + \frac{1}{\pi} \int_{0}^{2\pi} \sin(x + \xi) y(\xi) d\xi$ possess infinitely many solution.
 - b) Find the Resolvent Kernel for the Kernel $k(x, \xi) = xe^{\xi}$ in the interval [-1, 1].

K22P 3322

Reg. No. :

Name :

IV Semester M.Sc. Degree (C.B.S.S. – Reg./Supple./Imp.) Examination, April 2022 (2018 Admission Onwards) MATHEMATICS MAT 4E02 : Fourier and Wavelet Analysis

Time : 3 Hours

Max. Marks: 80

Answer any four questions from this Part. Each carries 4 Marks.

- 1. Define the conjugate reflection of $\omega \in l^2(Z_N)$. For any $z, \omega \in l^2(Z_N)$ and $k \in Z$, prove that $z * \tilde{\omega}(k) = \langle z, R_k \omega \rangle$.
- 2. Explain downsampling operator and upsampling operator.
- 3. If N = 2M for some natural number M, $z \in l^2(Z_N)$ and $\omega \in l^2(Z_{N/2})$, then prove that $D(z)*\omega = D(z*U(\omega))$.
- 4. If $z \in l^2(Z)$ and $\omega \in l^1(Z)$, show that $z^* \omega \in l^2(Z)$ and $||z^*\omega|| \le ||\omega||_1 ||z||$.
- 5. Define translation-invariant linear transformation on $l^2(Z)$. If $T : l^2(Z) \rightarrow l^2(Z)$ is bounded and translation-invariant, then show that T(z) = b*z for all $z \in l^2(Z)$, where $b = T(\delta)$.
- 6. If $z \in l^2(Z)$, show that $(z^*)^{\wedge}(\theta) = z^{\wedge}(\theta + \pi)$.
- 7. If $f,g \in L^1(R)$, show that $f * g \in L^1(R)$ and $||f * g||_1 \le ||f||_1 ||g||_1$.

8. If $f,g \in L^1(R)$, and if $\hat{f}, \hat{g} \in L^1(R)$, prove that $\langle \hat{f}, \hat{g} \rangle = 2\pi \langle f,g \rangle$. (4×4=16)

PART – B

Answer **any four** questions from this part, without omitting **any** Unit. **Each** question carries **16** marks.

Unit – I

- 9. a) Let $w \in l^2(Z_N)$. Then show that $\{R_k w\}_{k=0}^{N-1}$ is an orthonormal basis for $l^2(Z_N)$ if and only if $|\widehat{w}(n)| = 1$ for all $n \in Z_N$.
 - b) Suppose M is a natural number, N = 2M and $z \in l^2(Z_N)$. Define $z^* \in l^2(Z_N)$ by $z^*(n) = (-1)^n z(n)$ for all n. Then show that $(z^*)^n = \hat{z}(n + M)$ for all n.
- 10. Suppose M is a natural number and N = 2M. If u, $v \in l^2(Z_N)$, show that $\{R_{2k}v\}_{k=0}^{M-1} \cup \{R_{2k}u\}_{k=0}^{M-1}$ is an orthonormal basis for $l^2(Z_N)$ if and only if the system matrix A(n) of u, v is unitary for each n = 0, 1, ..., M 1.
- 11. Suppose M is a natural number, N = 2M and u,v,s,t $\in l^2(Z_N)$. Show that $\tilde{t} * U(D(z * \tilde{v})) + \tilde{s} * U(D(z * \tilde{u})) = z$ for all $z \in l^2(Z_N)$ if and only if $A(n) \begin{bmatrix} \hat{s}(n) \\ \hat{t}(n) \end{bmatrix} = \begin{bmatrix} \sqrt{2} \\ 0 \end{bmatrix}$ for each n = 0, 1, ..., N –1, where A(n) is the system matrix of u, v.
- 12. If $2^p|N$, explain the construction of a pth stage wavelet basis for $l^2(Z_N)$ from a given pth stage wavelet filter sequence.

Unit – II

- 13. a) If $\{a_j\}_{j \in Z}$ is an orthonormal set in a Hilbert space H, and if $f \in H$, show that the sequence $\{\langle f, a_j \rangle\}_{j \in Z} \in l^2(Z)$.
 - b) Show that an orthonormal set $\{a_j\}_{j \in Z}$ in a Hilbert space H is a complete orthonormal set if and only if $f = \sum_{i \in Z} \langle f, a_j \rangle a_j$ for all f in H.
- 14. a) Suppose $f \in L^1([-\pi, \pi))$ and $\langle f, e^{in\theta} \rangle = 0$ for all $n \in Z$, show that $f(\theta) = 0$ a.e.
 - b) If $z \in l^2(Z)$ and $\omega \in l^1(Z)$, prove that $(z * \omega)^{\wedge}(\theta) = \hat{z}(\theta) \widehat{w}(\theta)$ a.e.
- 15. If T : L²([$-\pi$, π)) \rightarrow L²([$-\pi$, π)) is a bounded, translation-invarient linear transformation, then show that there exists $\lambda_m \in C$ such that T(e^{imθ}) = $\lambda_m e^{im\theta}$ for each m $\in Z$.
- 16. Suppose that $u, v \in l^1(Z)$. Show that $B = \{R_{2k}v\}_{k \in Z} \cup \{R_{2k}u\}_{k \in Z}$ is a complete orthonormal set in $l^2(Z)$ if and only if the system matrix $A(\theta)$ is unitary for all $\theta \in [0, \pi)$.

Unit – III

- 17. Define approximate identity. Suppose $f \in L^1(R)$ and $\{g_t\}_{t>0}$ is an approximate identity. Then show that for every Lebesgue point x of f, $\lim_{t\to 0^+} g_t * f(x) = f(x)$.
- 18. Define Fourier transform and inverse Fourier transform on R. Suppose $f \in L^1(R)$ and $\hat{f} \in L^1(R)$, then show that $\frac{1}{2\pi} \int_R \hat{f}(\xi) e^{ix\xi} d\xi = f(x)$ a.e. on R. Use this to establish the uniqueness of Fourier transform.
- 19. Suppose $f \in L^2(R)$, $\{f_n\}_{n=1}^{\infty}$ is a sequence of functions such that $f_n, \hat{f}_n \in L^1(R)$ for each n, and $f_n \to f$ in $L^2(R)$ as $n \to \infty$. Show that $\{\hat{f}_n\}_{n=1}^{\infty}$ converges to a unique $F \in L^2(R)$. Also, show that if $f \in L^1(R) \cap L^2(R)$, then $F = \hat{f}$.
- 20. If f, $g \in L^2(R)$, prove that $\langle \hat{f}, \hat{g} \rangle = 2\pi \langle f, g \rangle$ and $\|\hat{f}\| = \sqrt{2\pi} \|f\|$. If $f \in L^2(R)$ and if $\{f_n\}_{n=1}^{\infty}$ is a sequence of L^2 functions such that $f_n \to f$ in $L^2(R)$ as $n \to \infty$, then prove that $\hat{f}_n \to \hat{f}$ in $L^2(R)$ as $n \to \infty$. (4×16=64)

K24P 1104

Reg. No. :

Name :

Second Semester M.Sc. Degree (C.B.C.S.S. – OBE – Regular) Examination, April 2024 (2023 Admission) MATHEMATICS MSMAT02C07/MSMAF02C07 : Measure Theory

Time : 3 Hours

Max. Marks : 80

PART – A

- 1. Define Leabesgue outer measure. Show that $m^*(A) \le m^*(B)$ if $A \subseteq B$.
- 2. Show that every countable set has measure zero.
- 3. Show that if f is a non-negative measurable function, then f = 0 a.e. if and only if $\int fdx = 0$.
- 4. Prove that if f and g are measurable. $|f| \le |g|$ a.e., and g is integrable, then f is integrable.
- 5. Prove that every algebra is a ring, but that the converse is not true.
- 6. Define $L^{p}(\mu)$. Let f, $g \in L^{p}(\mu)$ and let a, b be constants. Then show that af + bg $\in L^{p}(\mu)$.

PART – B

Answer any three questions from this Part. Each question carries 7 marks. (3×7=21)

- 7. Show that there exists uncountable sets of zero measure.
- 8. Let E be a measurable set. Then prove that for every y the set $E + y = [x + y : x \in E]$ is measurable and the measures are the same.

K24P 1104

- 9. Show that $\int_{1}^{\infty} \frac{dx}{x} = \infty$.
- 10. If μ is a measure on a ring R and if the function μ^* is defined on H(R) by $\mu^*(E) = \inf \left[\sum_{n=1}^{\infty} \mu(E_n) : E_n \in R, n = 1, 2, ..., E \subseteq \bigcup_{n=1}^{\infty} E_n \right]$, then prove that i) for $E \in R, \mu^*(E) = \mu(E)$
 - ii) μ^* is an outer measure on H(R).
- 11. Let [[X, S, μ]] be a measure space and f a non negative measurable function. Then prove that φ(E) = ∫_E fdμ is a measure on the measurable space
 [[X, S]]. Also prove that, if ∫ fdμ < ∞ then ∀ε > 0, ∃δ > 0 such that, if A ∈ S and μ(A) < δ, then φ(A) < ε.

PART – C

Answer any three questions from this Part. Each question carries 13 marks. (3×13=39)

- 12. State and prove Fatou's Lemma.
- 13. Show that the class M of Lebesgue measurable sets is a σ -algebra.
- 14. Let {E_i} be a sequence of measurable sets. Show that
 - a) if $E_1 \subseteq E_2 \subseteq ...$, then m(lim E_i) = lim m(E_i)
 - b) if $E_1 \supseteq E_2 \supseteq ...$ and $m(E_i) < \infty$ for each i, then $m(IimE_i) = Iim m(E_i)$.
- 15. If μ is a σ -finite measure on a ring R, then prove that it has a unique extension to the σ -ring S(R).
- 16. State and prove Holder's inequality. When does the equality occur ? Justify.

K24P 1106

Reg. No. :

Name :

Second Semester M.Sc. Degree (CBCSS – OBE – Regular) Examination, April 2024 (2023 Admission) MATHEMATICS MSMAT02C08 : Advanced Real Analysis

Time : 3 Hours

Max. Marks : 80

Answer **five** questions from this Part. **Each** question carries **4** marks. (5×4=20)

PART - A

1. Define pointwise convergence of a sequence of functions. For

m = 1, 2, ... n = 1, 2, 3, ... let $s_{m, n} = \frac{m}{m+n}$. Find $\lim_{n \to \infty} \lim_{m \to \infty} s_{m, n}$.

- 2. Prove that every uniformly convergent sequence of bounded functions is uniformly bounded.
- 3. Let $E(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}$. Prove that E(z + w) = E(z) + E(w), $z, w \in \mathbb{C}$.
- 4. If f is continuous with period 2π and if $\epsilon > 0$, prove that there is a trigonometric polynomial p such that $|p(x) f(x)| < \epsilon$ for all real x.
- 5. Define norm of a linear transformation. If A, B \in L(\mathbb{R}^n , \mathbb{R}^m), then prove that $||A + B|| \le ||A|| + ||B||$.

6. If
$$f(0, 0) = 0$$
 and $f(x, y) = \frac{xy}{x^2 + y^2}$ if $(x, y) \neq (0, 0)$, find $D_1 f(0, 0)$ and $D_2 f(0, 0)$.
PART – B

Answer three questions from this Part. Each question carries 7 marks. (3×7=21)

- 7. State and prove Cauchy criterion for uniform convergence of a sequence of functions.
- 8. Prove that there exists a real valued function on the real line which is nowhere differentiable.

K24P 1106

- 9. If K is compact, $f_n \in \mathscr{C}(K)$ for n = 1, 2, 3, ... and if $\{f_n\}$ is pointwise bounded and equicontinuous on K, then prove that $\{f_n\}$ contains a uniformly convergent subsequence.
- 10. Suppose $a_0, a_1, ..., a_n$, are complex numbers, $n \ge 1$, $a_n \ne 0$, $p(z) = \sum_{0}^{n} a_k z^k$. Then prove that p(z) = 0 for complex number z.
- 11. Let X be a complex metric space and if ϕ is a contraction of X into X. Prove that there exists one and only one $x \in X$ such that $\phi(x) = x$.

PART-C

Answer three questions from this Part. Each question carries 13 marks. (3×13=39)

- 12. a) Suppose $f_n \rightarrow f$ uniformly on a set E in a metric space. Let x be a limit point of E, and suppose that $\lim_{t \rightarrow x} f_n(t) = A_n$, n = 1, 2, 3,.... Then prove that $\{A_n\}$ converges and $\lim_{t \rightarrow x} f(t) = \lim_{n \rightarrow \infty} A_n$.
 - b) Give an example of a series of continuous functions with a discontinuous sum.
- 13. Suppose $\{f_n\}$ is a sequence of functions differentiable on [a, b] and that $\{f_n(x_0)\}$ converges for some point x_0 on [a, b]. If $\{f'_n\}$ converges uniformly on [a, b] then prove that $\{f_n\}$ converges uniformly on [a, b] to a function f and $f'(x) = \lim_{n \to \infty} f'_n(x), a \le x \le b.$
- 14. a) Define the following terms :
 - i) algebra.
 - ii) uniformly closed algebra.
 - iii) uniform closure of an algebra.
 - b) Let \mathscr{B} be the uniform closure of an algebra \mathscr{A} of bounded functions, then prove that \mathscr{B} is a uniformly closed algebra.
- 15. State and prove Parseval's theorem.
- 16. State and prove inverse function theorem.

K24P 1107

Reg. No. :

Name :

Second Semester M.Sc. Degree (C.B.C.S.S. – OBE – Regular) Examination, April 2024 (2023 Admission) MATHEMATICS MSMAT02C09/MSMAF02C09 : Advanced Topology

Time : 3 Hours

Max. Marks: 80

Answer **any 5** questions from the following 6 questions. **Each** question carries **4** marks.

PART – A

- 1. Show that the set of integers is not well-ordered in the usual order.
- 2. Does the set of rationals Q is compact ? Justify your answer.
- 3. Show that the real line R has a countable basis.
- 4. Let f, g : X \rightarrow Y be continuous; assume that Y is Hausdorff. Show that $\{x, f(x) = g(x)\}$ is closed in X.
- 5. Give an example showing that a Hausdorff space with a countable basis need not be metrizable.
- Show that the unit circle S¹ is a one-point compactification of the unit interval (0, 1).

PART – B

Answer **any 3** questions from the following 5 questions. **Each** question carries **7** marks.

- Prove the following : Every nonempty finite ordered set has the order type of a section {1, 2, ..., n} of Z₊, so it is well-ordered.
- 8. Prove that every metrizable space is normal.

(5×4=20)

K24P 1107

- 9. a) Prove that the product of two Lindelof space need not be Lindelof.
 - b) Prove that a subspace of a Lindelof space need not be Lindelof.
- 10. Show that every locally compact Hausdorff space is regular.
- 11. Prove the following : Let $A \subset X$; let $f : A \to Z$ be a continuous map of A in to the Hausdorff space Z. There is at most one extension of f to a continuous function g : $\overline{A} \to Z$. (3×7=21)

PART - C

Answer **any 3** questions from the following 5 questions. **Each** question carries **13** marks.

- 12. Prove the following :
 - a) Every closed subspace of a compact space is compact.
 - b) Every compact subspace of a Hausdorff space is closed.
 - c) The image of a compact space under a continuous map is compact.
- 13. Prove the following :
 - a) A subspace of a Hausdorff space is Hausdorff.
 - b) A product of Hausdorff space is Hausdorff.
 - c) A product of regular space is regular.
- 14. State and prove The Urysohn lemma.
- 15. State and prove Tietze Extension Theorem.
- 16. State and prove Tychonoff Theorem.

(3×13=39)