<u> Harry H</u>

K22P 0189

Il Semester M.Sc. Degree (C.B.S.S. - Reg./Supple./Imp.) **Examination, April 2022** (2018 Admission Onwards) **MATHEMATICS MAT 2C 06 - Advanced Abstract Algebra**

Time: 3 Hours

Max. Marks: 80

Answer any four questions. Each question carries 4 marks.

- 1. Prove that $\mathbb{Z}[i]$ is an Euclidean domain.
- 2. Construct a field of four elements by showing $x^2 + x + 1$ is irreducible in \mathbb{Z} [x].

 $PART - A$

- 3. Show that it is not always possible to construct with straight edge and compass, the side of a cube that has double the volume of original cube.
- 4. Show that if F is a finite field of characteristic p, then the map σ_{p} : F \rightarrow F defined by $\sigma_{p}(a) = a^{p}$, for $a \in F$, is an automorphism.
- 5. Prove that there exists only an unique algebraic closure of a field up to isomorphism.
- 6. If E is a finite extension of F, Then prove that $\{E : F\}$ divides $[E : F]$. $(4 \times 4 = 16)$

 $PART - B$

Answer any 4 questions without omitting any Unit. Each question carries 16 marks.

$UNIT-I$

6

10

8

8

5

 $\overline{\mathbf{4}}$

 $\overline{7}$

4

6

6

 $v, v(1)$ is minimal

- b) Let p be a prime and $n \in \mathbb{Z}^+$. Prove that if E and E' are fields of order pⁿ, then $E \cong E'$.
- 11. a) Find the degree and basis for $\mathbb{Q}(\sqrt[3]{5},2)$ and $\mathbb{Q}(\sqrt{2}+\sqrt{3})$ over \mathbb{Q} .

b) Prove in detail that
$$
\mathbb{Q}(\sqrt{3} + \sqrt{7}) = \mathbb{Q}(\sqrt{3}, \sqrt{7})
$$
.

- c) Define algebraic closure of a field and prove that, a field F is algebraically closed if and only if, every non constant polynomial in F[x] factors in F[x] into linear factors.
- 12. a) Describe the group $G(Q\sqrt{2},\sqrt{3}/Q)$.
	- b) Let F be a field and let α , β are algebraic over F. Then prove that F (α) \cong F(β) if and only if α and β are conjugates over F.
	- c) Let $\{\sigma_i / i \in I\}$ be the collection of automorphisms of a field \bar{F} . Then prove that the set $E_{\{\sigma_i\}}$ of all $a \in E$ left fixed by every σ_i for $i \in I$, forms a subfield of E.

$UNIT - III$

K22D 0120

ა

\blacksquare \blacks

Reg. No. :

Name :

II Semester M.Sc. Degree (C.B.S.S. – Reg./Supple./Imp.) Examination, April 2023 (2019 Admission Onwards) MATHEMATICS MAT 2C 06: Advanced Abstract Algebra 1. Find $\begin{bmatrix} \text{a} & \text{b} & \text{c} & \text{c} & \text{d} & \text{d} \end{bmatrix}$. The present M.Sc. Degree (C.B.S.S. – Reg./Supple./Imp.)

Examination, April 2023

(2019 Admission Onwards)

MAT 2C 06: Advanced Abstract Algebra

1. Fin **MAT 2C 06: Advanced Abstract Algebra**

The : 3 Hours

Max. Marks : 80

PART – A

I. Find $[Q(\sqrt{2}, \sqrt{3}) : Q]$.

2. Find the primitive 5th root of unity in Z₁₁.

3. Distinguish between primes and irreducibles of an integ

PART – A

Time : 3 Hours Max. Marks : 80

Answer any 4 questions. Each question carries 4 marks.

-
-
-
- 4. Is Z[i] is an integral domain ?
- 5. What is the order of $G(Q(\sqrt[3]{2})/Q)$? ?
-

PART – B

Show that $\sqrt{1+\sqrt{5}}$ is algebraic over Q.

I. Find $\left[\Omega(\sqrt{2},\sqrt{3}) : \mathbf{Q}\right]$.

2. Find the primitive 5th root of unity in Z_{11} .

3. Distinguish between primes and irreducibles of an integral domain.

4. Is Z[i] is a Answer 4 questions without omitting any Unit. Each question carries 16 marks.

Unit – I

 $\frac{1}{2}$, $\frac{1$

K22P 0190

Il Semester M.Sc. Degree (CBSS - Reg./Supple./Imp.) Examination, April 2022 (2018 Admission Onwards) **MATHEMATICS MAT 2C 07: Measure and Integration**

ഹ ജേ്യാ_{താ}

Time: 3 Hours

Max. Marks: 80

Answer any four questions from this Part. Each question carries 4 marks.

 $PART - A$

- 1. Show that if $m^*(E) = 0$, then E is measurable.
- 2. Show that there exists an uncountable set with measure zero.
- 3. Give an example of a function which is Lebesque integrable but not Riemann integrable.
- 4. Prove that if f and g are integrable functions, then $f + g$ is also integrable.
- 5. Define $L^p(\mu)$ and prove that if f, $g \in L^p(\mu)$ and a, b are constants, then af + bg $\in L^p(\mu)$.
- 6. Define integral of a measurable simple function with respect to a measure μ .

 $(4 \times 4 = 16)$

$PART - B$

RINNE

Answer any four questions from this Part without omitting any Unit. Each question carries 16 marks.

Unit -1

- 7. a) Prove that every interval is measurable.
	- b) Prove that the class of all Lebesque measurable functions is a σ algebra.
	- c) Show that for any measurable function f and g.

ess sup. $(f + g) \le$ ess sup $f + e$ ss sup q and give an example of strict inequality.

K22P 0190

- 8. a) Construct a non-measurable set.
	- b) Let f be a measurable function and let $f = g$ a.e, then prove that g is measurable.
- 9. a) State and prove Fatuous Lemma.
	- b) Show that $\int_{1}^{\infty} \frac{dx}{x} = \infty$.

Unit $-$ II

- 10. a) State and prove Lebesque Dominated convergence theorem.
	- b) Let f be a bounded measurable function defined on the finite interval

(a, b). Show that
$$
\lim_{\beta \to \infty} \int f(x) \sin \beta x dx = 0
$$
.

- 11. a) Let μ^* be an outer measure of $H(R)$ and let S^{*} denote the class of μ^* – measurable sets. Then prove that S^{*} is a σ – ring and μ^* restricted to S* is a complete measure.
	- b) Define a σ finite measure. Show that if μ is a σ finite measure on R, then the extension $\bar{\mu}$ of μ to S^{*} is also σ – finite.
- 12. a) Show that Lebesque measure is a σ finite measure and complete.
	- b) If μ is a σ finite measure on a ring R, then prove that it has a unique extension to the σ – ring S(R).

$Unit - III$

- 13. a) Let $\left[\!\left[\mathsf{X},\mathsf{S},\mu\right]\!\right]$ be a measure space and f a non-negative measurable function. Then prove that $\varphi(E) = \int_E f d\mu$ is a measure on the measurable space $\llbracket X, S \rrbracket$. Also prove that if $\int f d\mu < \infty$, then $\forall \in >0$, $\exists \delta > 0$ such that, if $A \in S$ and $\mu(A) < \delta$, then $\varphi(A) < \delta$.
	- b) Define $L^{\infty}(X, \mu)$ and prove that $L^{\infty}(X, \mu)$ is a vector space over the real numbers.
- 14. a) State and prove Hölder's inequality.
	- b) State and prove Minkowski's inequality.
- 15. a) If $1 \le p \le \infty$ and $\{f_n\}$ is a sequence in $L^p(\mu)$ such that $||f_n f_m||_p \to 0$ as m, $n \to \infty$, then prove that there exists a function f and a subsequence $\{n_i\}$ such that $\lim f_{n_i} = f$ a.e. Also prove that $f \in L^p(\mu)$ and $\lim \|f_n - f\|_p = 0$.
	- b) Prove that $L^{\infty}(\mu)$ is a complete metric space.

 $(4 \times 16 = 64)$

K23P0499 **K23P 0499**

Reg. No. :

Name :

II Semester M.Sc. Degree (CBSS – Reg./Supple./Imp.) Examination, April 2023 (2019 Admission Onwards) mathematics mat 2c 07 : Measure and Integration

 $PART - A$

 $Time: 3$ Hours \leftarrow Max. Marks : 80

Answer **any 4** questions. **Each** question carries **4** marks.

- 1. Show that every countable set has measure zero.
- 2. Define measurable function. Show that every continuous functions are measurable.
- 3. Let $f(x)$ is function defined on [0, 2] defined by : $f(x) = 1$ for x rational, if x is irrational, f(x) = -1, then find \int_0^1 $^{2}_{2}$ fdx.
- 4. If A and B are disjoint measurable sets, then show that $J_{A\cup B}$ fdx = J_A fdx + J_B fdx.
- 5. Show that $L^{\infty}(X, \mu)$ is a vector space over the real numbers.
- 6. State and prove Minkowski's inequality.

Part – B

Answer **any 4** questions without omitting **any** Unit . **Each** question carries **16** marks.

Unit – I

- 7. a) Prove that Every interval is measurable.
	- b) Define Borel sets. Show that every Borel set is measurable.
- 8. a) Show that collection of measurable function forms a vector space over real numbers.
	- b) Show that Borel set is a proper subset of Lebesgue Measurable sets.
- 9. a) State and prove Fatou's Lemma.
	- b) Let f and g be non-negative measurable functions. Then show that ∫ fdx + ∫ gdx = ∫(f + g)dx.

Unit – II

- 10. a) State and prove Lebesgue's Dominated Convergence theorem.
	- b) Let f be a bounded function defined on the finite interval [a, b], then prove that f is Riemann integrable over [a, b] if and only if it is continuous a.e.
- 11. a) Let μ^* be an outer measure on $H(R)$ and let S^* denote the class of μ^* measurable sets. Then prove that S^* is a σ ring and μ^* restricted to S^* is a complete measure.
	- b) If μ is a σ -finite measure on a ring R , then show that it has a unique extension to the σ-ring *S(R)* .
- 12. a) Let f be bounded and measurable on a finite interval [a, b] and let $\epsilon > 0$, then show that there exist a continuous function g such that g vanishes outside a finite interval and \int_{a}^{b} $\frac{b}{a}$ |f – g|dx < \in .
	- b) Define σ-finite and complete measure on a ring *R*. Also show that Lebesgue measure m defined on M , the class of measurable sets of $\mathbb R$ is σ -finite and complete.

Unit – III

- 13. a) Define L^p Space for $1 \le p \le \infty$. Also show that if $\mu(X) < \infty$ and $0 < p < q \le \infty$ then show that $\mathsf{L}^q(\mu) \subseteq \mathsf{L}^p(\mu)$.
	- b) State and prove Holder's Inequality. When does its equality occurs ?
- 14. a) Let f_n be a sequence of measurable functions, $f_n : X \rightarrow [0, \infty]$, such that $f_n(x)$ \uparrow for each x and let f = lim f_n then prove that $\int f dx = \lim \int f_n d\mu$.
	- b) Let $[[X, S, \mu]]$ be a measure space and f a non-negative measurable function. Then prove that $\phi(E) = \int_E f d\mu$ is a measure on the measurable space [[X, S]]. Also show that if ∫ fdµ < ∞ then ∀∈> 0, ∃δ > 0 such that if A ∈ S and $\mu(A) < \delta$, then $\phi(A) < \epsilon$.
- 15. a) If $1 \le p \le \infty$ and $\{f_n\}$ is a sequence in $L^P(\mu)$ such that $||f_n f_m||_p \to 0$ as n, m $\rightarrow \infty$ then show that there exists a function f and a sequence $\{n_i\}$ such that lim $f_{n_i} = f$ a.e. and $f \in L^p(\mu)$.
	- b) Let f_n be a sequence in $L^{\infty}(\mu)$ such that $||f_n f_m|| \to 0$ as n, m $\to \infty$. Then show that there exists a function f such that $\lim_{n \to \infty} f_n = f$ a.e, $f \in L^{\infty}(\mu)$ and $\lim ||f_n - f||_{\infty} = 0.$

––––––––––––––––––

K₂₃P 0500

Il Semester M.Sc. Degree (CBSS – Reg./Supple./Imp.) **Examination, April 2023** (2019 Admission Onwards) **MATHEMATICS MAT 2C08 : Advanced Topology**

Time: 3 Hours

Max. Marks: 80

$PART - A$

Answer any 4 questions. Each question carries 4 marks.

- 1. Let $X = \{0\} \cup \{\frac{1}{n} : n \in \mathbb{N}\}$.
	- a) Define a topology \mathcal{T}_1 on X such that (X, \mathcal{T}_1) is a compact space. Justify your answer.
	- b) Define a topology \mathcal{T}_2 on X such that (X, \mathcal{T}_2) is not compact space. Justify your answer.
- 2. Prove or disprove: Every compact subset of a topological space is closed.
- 3. Prove that complete regularity is a topological property.
- 4. Give an example of Lindeloff space which is not compact.
- 5. Define Hilbert cube. Prove that a Hilbert cube is metrizable.
- 6. Prove that a normed space is completely regular.

K23P 0500

$PART - B$

Answer any 4 questions without omitting any Unit. Each question carries 16 marks.

Unit -1

- 7. a) Let (X, \mathcal{T}) be a T₁ space. Prove that X is a countably compact if and only if it has the Bollzano-Weierstrass property.
	- b) Show that the condition that X is a $T₁$ space in part (a) is necessary. Justify your claim.
- 8. Prove that the product of any finite number of compact spaces is compact.
- 9. a) Prove or disprove : Local compactness is a topological property.
	- b) Prove that every closed subspace of a locally compact Hausdorff space is locally compact.
	- c) Give an example of a metric space which is locally compact but not sequentially compact.

Unit $-$ II

- 10. a) Prove that every finite set in a $T₁$ space is closed.
	- b) Prove that every second countable space is Lindeloff.
	- c) Is the converse of part (b) true? Justify your claim.
- 11. a) Define a completely normal topological space. Prove that a T₁ space (X, T) is completely normal iff every subspace of X is normal.
	- b) Prove that every second countable regular space is normal.
- 12. a) Let $\{(x_{\alpha}, T_{\alpha}) : \alpha \in \Lambda\}$ be a family of topological spaces and let $X = \prod_{\alpha \in \Lambda} X_{\alpha}$. Prove that X is completely regular iff $(X_{\alpha}, \mathcal{T}_{\alpha})$ is completely regular for each $\alpha \in \Lambda$.
	- b) Let (X, \mathcal{T}) be a topological space with a dense subset D and a closed, relatively discrete subset C such that $P(D) \le C$. Then prove that (X, \mathcal{T}) is not normal.
	- c) Give an example of a Lindeloff space that is not separable. Justify your answer.

Unit $-$ III

- 13. a) Prove that a T₁ space (X, T) is normal if and only if whenever A is a closed subset of X and f: A \rightarrow [-1, 1] is a continuous function, then there is a continuous function $F : X \rightarrow [-1, 1]$ such that $F|_{A} = f$.
	- b) Using (a) part, state and prove Uryshon lemma.
- 14. State and prove Alexander sub base theorem.
- 15. a) State Urysohn metrization theorem. Using the Urysohn Metrization theorem prove the following : \Box

Let (X, d) be a compact metric space, let (Y, U) be a Hausdorff space and let f: $X \rightarrow Y$ is a continuous function that maps X onto Y. Prove that (Y, U) is metrizable.

b) Let (X, \mathcal{T}) and (Y, \mathcal{U}) be topological spaces. Then show that homotopy (\simeq) is an equivalence relation on $C(X, Y)$, the collection of continuous functions that maps X into Y.

\blacksquare K23P 0501

Reg. No. :

Name :

II Semester M.Sc. Degree (C.B.S.S. – Reg./Supple./Imp.) Examination, April 2023 (2019 Admission Onwards) MATHEMATICS MAT2C09 : Foundations of Complex Analysis Analysis

Max. Marks : 80

2 π .

2 π .

2 π .

2 $\frac{1}{2}$ a point. Illustrate with

2 $\frac{log(z + 1)}{z^2}$.

Answer any 4 questions. Each question carries 4 marks.

- 1. Evaluate the integral $\int \frac{dz}{z}$, where $\gamma(t) = 2e^{it}$, $0 \le t \le 2$ z^2+1 more $\sqrt{(y-2c)}$, $c = 1-2m$, where $\gamma(t) = 2e^{it}$, $0 \le t \le 2\pi$.
- example.

 $z + 1$ z^2 and z^2 and .

- 4. Find the residue of $f(z) = \tan z$ at $z = \frac{\pi}{2}$. 2 \rightarrow \rightarrow \rightarrow
-
- 6. State Arzela-Ascoli theorem in space of continuous functions.

PART – B

.

Answer any 4 questions without omitting any Unit. Each question carries 16 marks.

Unit – I

- 7. a) If G is a region and f: G $\rightarrow \mathbb{C}$ is an analytic function such that there is a point a in G with $|f(a)| \ge |f(z)|$ for all z in G. Prove that f is constant.
	- b) If G is simply connected and f: $G \rightarrow \mathbb{C}$ is analytic in G. Prove that f has primitive in G.

K23P 0501

-
- 8. a) Let γ be a closed rectifiable curve in $\mathbb C$. Prove that $n(\gamma, a)$ is constant in each component of $\mathbb{C} - \gamma$.
	- b) Evaluate the integral $\int_{\gamma} \frac{(e^z e^{-z})dz}{z^n}$, where n is a positive integer and $\gamma(t) = e^{it}$, $0 \le t \le 2\pi$.
- 9. State and prove Goursat's theorem.

Unit $-$ II

- 10. a) Find the Laurent series expansion of $f(z) = \frac{1}{z(z-1)(z-2)}$ in ann(0, 1, 2).
	- b) Let z = a be an isolated singularity of f and let $f(z) = \sum_{n=1}^{\infty} a_n (z-a)^n$ be its Laurent expansion in ann(a, 0, R). Prove that $z = a$ is a pole of order m if and only if $a_m \neq 0$ and $a_n = 0$ for $n \leq -(m + 1)$.
- 11. a) Evaluate the integral $\int_{0}^{\pi} \frac{d\theta}{a + \cos \theta}$, $a > 1$ by the method of residues.
	- b) State and prove Argument principle.
- 12. Let $D = \{z : |z| < 1\}$ and suppose f is analytic on D with $|f(z)| \le 1$ for z in D and $f(0) = 0$. Prove that $|f'(0)| \le 1$ and $|f(z)| \le |z|$ for all z in the disk D.

$Unit - III$

- 13. a) Prove that $C(G, \Omega)$ is a complete metric space.
	- b) If $\mathcal{F} \subset C$ (G, Ω) is equicontinuous at each point of G. Prove that F is equicontinuous over each compact subset of G.
- 14. a) State and prove Hurwitz's theorem.
	- b) Let Rez_n > -1, prove that the series $\sum_{n=1}^{\infty} \log(1+z_n)$ converges absolutely if and only if the series $\sum_{n=1}^{\infty} z_n$ converges absolutely.
- 15. State and prove Weierstrass Factorization theorem.

K24P0864 **K24P 0864**

Reg. No. :

Name :

Second Semester M.Sc. Degree (C.B.S.S. – Supple. (One Time Mercy Chance)/Imp.) Examination, April 2024 (2017 to 2022 Admissions) MATHEMATICS MAT 2C 09 : Foundations of Complex Analysis

Attempt **any four** questions from this part. **Each** question carries **4** marks :

- 1. Given that γ and σ are closed rectifiable curves having the same initial points. Prove that $n(\gamma + \sigma, a) = n (\gamma, a) + n(\sigma, a)$ for every $a \notin {\gamma} \cup {\sigma}$.
- 2. Let f be analytic on B(0, 1) and suppose $|f(z)| \le 1$ for $|z| < 1$. Show that $|f'(0)| \le 1$.
- 3. Does the function f(z) = $z^2 \sin \left(\frac{1}{z^2} \right)$ $\left(\frac{1}{z^2}\right)$ has an essential singularity at z = 0 ? Justify your answer.
- 4. Using residue Theorem, prove that $\int_0^{\infty} \frac{1}{1+x^2} dx$ $\int_0^\infty \frac{1}{1+x^2} \, dx = \frac{\pi}{2}$.
- 5. Define the set $C(G, Ω)$ and show that it is non-empty.
- 6. State the Weierstrass Factorization theorem.

PART – B

Answer **any four** questions from this part without omitting any Unit. **Each** question carries **16** marks :

Unit – I

- 7. a) Prove the following : If G is simply connected and f : $G \rightarrow C$ is analytic in G then f has a primitive in G.
	- b) State and prove The Open Mapping Theorem.

K24P 0864 -2- *K24P0864*

- 8. State and prove the Third Version of Cauchy's Theorem.
- 9. Prove the following : let G be a connected open set and let f : $G \rightarrow C$ be an analytic function. Then the following conditions are equivalent.
	- a) $f \equiv 0$;
	- b) there is a point a in G such that $f^n(a) = 0$ for each $n \geq 0$;
	- c) ${z \in G : f(z) = 0}$ has a limit point in G.
- 10. a) Show that for a > 1, Show that $\int_0^{\pi} \frac{d\theta}{a + \cos \theta} = \frac{\pi}{\sqrt{a^2}}$ $\int_0^{\pi} \frac{d\theta}{a + \cos \theta} = \frac{\pi}{\sqrt{a^2 - 1}}$. b) State and prove the Residue theorem.
- 11. State and prove the Laurent Series Development.
- 12. Prove the following :
	- a) If $|a| < 1$ then $\varphi_a(z) = \frac{z-a}{1-\overline{a}z}$ $\frac{z-a}{-\overline{a}z}$ is a one-one map of D = {z : |z| < 1} on to itself ; the inverse of $~\phi_{_{a}}$ is ϕ_{-a} . Furthermore, $\phi_{_{a}}$ maps ∂D on to ∂D, $\phi'_{_{a}}(0)$ = 1 $-$ |a| 2 and $\varphi'_a(a) = (1 - |a|^2)^{-1}$.

Unit – II

b) Let $f(z) = \frac{1}{z(z-1)(z-2)}$; give the Laurent series of $f(z)$ in each of the following annuli :

WUR UNI

- i) $ann(0:0,1)$,
- ii) ann (0 ; 1, 2),
- iii) ann $(0:2, \infty)$.

Unit – III

- 13. a) Prove the following : If G is open in C then there is a sequence $\{K_n\}$ of compact subsets of G such that G = $\cup_{n=1}^{\infty} K_n$. Moreover the sets K_n can be chosen to satisfy the following conditions :
	- i) $k_n \subset \text{int } K_{n+1}$.
	- ii) K \subset G and K is compact implies K \subset K_n for some n.
	- iii) Every component of C $_{\infty}$ K_n contains a component of C $_{\infty}$ G.
	- b) State and prove Hurwitz's theorem.

K24P0864 -3- **K24P 0864**

- 14. a) With the usual notations, prove that $|1 \mathsf{E}_{p}(z)| \leq |z|^{p+1}$ for $|z| \leq 1$ and $p \geq 0$.
	- b) Discuss the convergence of the infinite product $\prod_{\mathsf{n}=\mathsf{1}}^\infty \frac{1}{\mathsf{n}^\mathsf{p}}$ n $\prod_{n=1}^{\infty} \frac{1}{n^p}$ for $p > 0$.
- 15. a) Show that $\prod_{n=1}^{\infty} (1 + z_n)$ converges absolutely iff $\prod_{n=1}^{\infty} (1 + |z_n|)$ converges.
	- b) Prove the following : If Rez_n > 0 then the product $\prod z_n$ converges absolutely iff the series $\Sigma({\sf z_n-1})$ converges absolutely.
	- c) Prove the following : Let Rez_n > 0 for all n ≥ 1 . Then $\prod_{n=1}^{\infty}$ z_n converges to a non zero number iff the series $\sum_{\mathsf{n}=1}^\infty$ logz n_n converges.

K22P 0193

Il Semester M.Sc. Degree (CBSS - Reg./Supple./Imp.) Examination, April 2022 (2018 Admission Onwards) **MATHEMATICS**

MAT 2C10: Partial Differential Equations and Integral Equations

Time: 3 Hours

Max. Marks: 80

Answer any four questions from this Part. Each question carries 4 marks.

- 1. Eliminate the arbitrary function F from $z = F\left(\frac{xy}{z}\right)$ and find the corresponding partial differential equation.
- 2. Find the general solution of $yzp + xzq = xy$.
- 3. Show that the solution of the Dirichlet problem if it exists is unique.
- 4. Find the Riemann function of the equation $Lu = u_{xy} + \frac{1}{4}u = 0$.
- 5. Transform the problem $y'' + xy = 1$, $y(0) = 0$, $y(l) = 1$ into an integral equation.
- 6. Prove that the characteristic numbers of a Fredholm equation with a real symmetric kernel are all real. \forall \Box $(4 \times 4 = 16)$

$PART - B$

Answer four questions from this Part, without omitting any Unit. Each question carries 16 marks.

Unit -1

7. a) Show that the Pfaffian differential equation \overrightarrow{X} . $\overrightarrow{dr} = P(x, y, z)dx +$

 $Q(x, y, z)dy + R(x, y, z)dz = 0$ is integrable if and only if X curl $X = 0$.

b) Show that $ydx + xdy + 2zdz = 0$ is integrable and find its integral.

K22P 0193

- 8. a) Find a complete integral of z^2 pqxy = 0 by Charpits method.
	- b) Solve $u_x^2 + u_y^2 + u_z = 1$ by Jacobi's method.
- 9. a) Find a complete integral of the equation $(p^2 + q^2)$ x = pz and the integral surface containing the curve C : $x_0 = 0$, $y_0 = s^2$, $z_0 = 2s$.
	- b) Solve $xz_y yz_x = z$ with the initial condition $z(x, 0) = f(x), x \ge 0$.

Unit -2

- 10. a) Reduce the equation $u_{xx} + 2u_{xy} + 17u_{yy} = 0$ into canonical form.
	- b) Derive d'Alembert's solution of one dimensional wave equation.
- 11. a) Solve $y_{tt} C^2 y_{xx} = 0$, $0 < x < 1$, $t > 0$.

$$
y(0, t) = y(1, t) = 0
$$

 $y(x, 0) = x(1 - x), 0 \le x \le 1$

 $y_t(x, 0) = 0, 0 \le x \le 1$

- b) State and prove Harnack's theorem.
- 12. a) Solve the differential equation corresponding to heat conduction in a finite rod.
	- b) Prove that the solution $u(x, t)$ of the differential equation
		- $u_t k u_{xx} = F(x, t), 0 < x < l, t > 0$ satisfying the initial condition
		- $u(x, 0) = f(x), 0 \le x \le l$ and the boundary conditions

 $u(0, t) = u(l, t) = 0, t \ge 0$ is unique.

Unit -3

13. a) Solve $y'' = f(x)$, $y(0) = y(l) = 0$.

b) Solve
$$
x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + (\lambda x^2 - 1)y = 0
$$
 with $y(0) = 0$, $y(1) = 0$.

 $-3-$

- 14. a) If y_m , y_n are characteristic functions corresponding to different characteristic numbers λ_m , λ_n of $y(x) = \lambda \int_0^x K(x, \xi) y(\xi) d\xi$, then if K (x, ξ) is symmetric. Prove that y_m and y_n are orthogonal over (a, b).
	- b) Solve the integral equation $y(x) = f(x) + \lambda \int_{0}^{1} (1 3x\xi)y(\xi) d\xi$ and discuss all its possible cases.
- 15. a) Describe the iterative method for solving Fredholm equation of second kind.
	- b) Find the iterated Kernels $K_2(x, \xi)$ and $K_3(x, \xi)$ associated with $K(x, \xi) = |x - \xi|$ in the interval [0, 1]. $(4 \times 16 = 64)$

<u> Handi ka matsayin ka shekara ta shekara ta shekara ta 1999 da ka shekara ta 1999 da ka shekara ta 1999 da ka </u>

K23P 0502

Il Semester M.Sc. Degree (C.B.S.S. - Reg./Supple./Imp.) **Examination, April 2023** (2019 Admission Onwards) **MATHEMATICS**

MAT 2C 10: Partial Differential Equations and Integral Equations

Time: 3 Hours

Max. Marks: 80

Answer any 4 questions. Each question carries 4 marks.

- 1. Eliminate the arbitrary function F from the equation $F(z xy, x^2 + y^2)$ and find the corresponding Partial differential equation.
- 2. Show that $z = ax + \frac{y}{a} + b$ is complete integral of pq = 1.
- 3. State and prove maximum principle for harmonic function.
- 4. Prove that the solution of Neumann problem is unique up to the addition of a constant.
- 5. Define Fredholm integral equation of second kind and give an example.
- 6. Solve the integral equation $y(x) = 1 + \lambda \int_0^1 (1-3x\xi)y(\xi) d\xi$ by iterative method.

PART-B

Answer any 4 questions without omitting any Unit. Each question carries 16 marks.

Unit -1

- 7. a) Find the general integral of the equation $y^2p - xyq = x(z - 2y)$.
	- b) Prove that the equations $f = xp yq x = 0$, $q = x^2p + q xz = 0$ are compatible and find a one parameter family of common solutions.
- 8. a) Find the complete integral of $(p^2 + q^2)y qz = 0$ by Charpit's method.
	- b) Solve the PDE by Jacobi's method $z^{2} + zu_{x} - u_{x}^{2} - u_{y}^{2} = 0.$

K23P 0502

<u> I III An Dùbhlachadh ann an Dùbhlachad</u>

- a) Find the integral surface of the equation $(2xy 1)p + (z 2x^2)q = 2(x yz)$ 9. which passes through the line $x_0(s) = 1$, $y_0(s) = 0$ and $z_0(s) = s$.
	- b) Find the characteristic strips of the equation $xp + yq = pq$ where the initial curve is $c: z = \frac{x}{2}, y = 0$.

$$
Unit-II
$$

- 10. a) Reduce the equation $u_{xx} 4x^2u_{yy} = \frac{1}{x}u_{x}$ into a canonical form.
	- b) Derive d'Alemberts solution of wave equation.
- 11. a) Solve $y_{tt} c^2 y_{xx} = 0$, $0 < x < 1$, $t > 0$ $y(0, t) = y(1, t) = 0$ $y(x, 0) = x(1 - x), 0 \le x \le 1$ $y_i(0, t) = 0, 0 \le x \le 1$
	- b) Prove that solution of Dirichlet problem is stable.
- 12. a) Solve the Dirichlet problem for a circle.
	- b) Solve the heat conduction problem in a finite rod.

 $Unit - III$

- 13. a) Transform the boundary value problem $\frac{d^2y}{dx^2} + \lambda y = 0$, $y(0) = 0$, $y(l) = 0$ to an integral equation.
	- b) Show that the characteristic function of the symmetric Kernel corresponding to distinct characteristic numbers are orthogonal.
- 14. a) Using Green's function, solve the boundary value problem $y'' + xy = 1$, $y(0) = 0$, $y(l) = 1$.
	- b) Show that any solution of the integral equation $y(x) = \lambda \int_0^1 (1-3xy)y(\xi) d\xi + F(x)$ can be expressed as the sum of $F(x)$ and some linear combination of the characteristic functions.
- 15. a) Show that the integral equation $y(x) = 1 + \frac{1}{\pi} \int_0^{2\pi} \sin(x + \xi) y(\xi) d\xi$ possess infinitely many solution.
	- b) Find the Resolvent Kernel for the Kernel $k(x, \xi) = xe^{\xi}$ in the interval [-1, 1].

K22P 3322

IV Semester M.Sc. Degree (C.B.S.S. – Reg./Supple./Imp.) **Examination, April 2022** (2018 Admission Onwards) **MATHEMATICS MAT 4E02: Fourier and Wavelet Analysis**

Time: 3 Hours

Max. Marks: 80

Answer any four questions from this Part. Each carries 4 Marks.

- 1. Define the conjugate reflection of $\omega \in l^2(Z_N)$. For any z, $\omega \in l^2(Z_N)$ and $k \in Z$, prove that $z * \tilde{\omega}(k) = \langle z, R_k \omega \rangle$.
- 2. Explain downsampling operator and upsampling operator.
- 3. If N = 2M for some natural number M, $z \in l^2(Z_N)$ and $\omega \in l^2(Z_{N/2})$, then prove that $D(z)*\omega = D(z*U(\omega))$.
- 4. If $z \in l^2(\mathbb{Z})$ and $\omega \in l^1(\mathbb{Z})$, show that $z \ast \omega \in l^2(\mathbb{Z})$ and $||z \ast \omega|| \leq ||\omega||_1 ||z||$.
- 5. Define translation-invariant linear transformation on $l^2(Z)$. If T : $l^2(Z) \rightarrow l^2(Z)$ is bounded and translation-invariant, then show that $T(z) = b * z$ for all $z \in l^2(Z)$, where $b = T(\delta)$.
- 6. If $z \in l^2(\mathbb{Z})$, show that $(z^*)^{\wedge}(\theta) = z^{\wedge}(\theta + \pi)$.
- 7. If $f,g \in L^1(R)$, show that $f*g \in L^1(R)$ and $||f*g||_1 \leq ||f||_1 ||g||_1$.
- 8. If $f,g \in L^1(R)$, and if $\hat{f}, \hat{g} \in L^1(R)$, prove that $\langle \hat{f}, \hat{g} \rangle = 2\pi \langle f, g \rangle$. $(4 \times 4 = 16)$

$PART - B$

Answer any four questions from this part, without omitting any Unit. Each question carries 16 marks.

Unit- I

- 9. a) Let $w \in l^2(Z_N)$. Then show that $\{R_kw\}_{k=0}^{N-1}$ is an orthonormal basis for $l^2(Z_N)$ if and only if $|\hat{w}(n)|$ = 1 for all $n \in Z_N$.
	- b) Suppose M is a natural number, N = 2M and $z \in l^2(Z_N)$. Define $z^* \in l^2(Z_N)$ by $z*(n) = (-1)^n z(n)$ for all n. Then show that $(z*)^n(n) = \hat{z}(n + M)$ for all n.
- 10. Suppose M is a natural number and N = 2M. If $u, v \in l^2(Z_N)$, show that $\{R_{2k}v\}_{k=0}^{M-1} \cup \{R_{2k}u\}_{k=0}^{M-1}$ is an orthonormal basis for $l^2(Z_N)$ if and only if the system matrix A(n) of u, v is unitary for each $n = 0, 1, ...$, $M - 1$.
- 11. Suppose M is a natural number, N = 2M and u,v,s,t \in $l^2(Z_{N})$. Show that $\tilde{t} * U(D(z * \tilde{v})) + \tilde{s} * U(D(z * \tilde{u})) = z$ for all $z \in l^2(Z_N)$ if and only if $A(n) \begin{bmatrix} \hat{s}(n) \\ \hat{t}(n) \\ \hat{t}(n) \end{bmatrix} = \begin{bmatrix} \sqrt{2} \\ 0 \end{bmatrix}$ for each $n = 0, 1, ... , N - 1$, where $A(n)$ is the system matrix of u, v.
- 12. If 2^p|N, explain the construction of a pth stage wavelet basis for $l^2(Z_N)$ from a given pth stage wavelet filter sequence.

Unit $-$ II

- 13. a) If $\{a_j\}_{j \in \mathbb{Z}}$ is an orthonormal set in a Hilbert space H, and if $f \in H$, show that the sequence $\{(f, a_j)\}_{j \in \mathbb{Z}} \in \ell^2(\mathbb{Z})$.
	- b) Show that an orthonormal set $\{a_i\}_{i\in \mathbb{Z}}$ in a Hilbert space H is a complete orthonormal set if and only if $f = \sum_{i=7}^{1} \langle f, a_i \rangle a_i$ for all f in H.
- 14. a) Suppose $f \in L^1([- \pi, \pi))$ and $\langle f, e^{in\theta} \rangle = 0$ for all $n \in \mathbb{Z}$, show that $f(\theta) = 0$ a.e.
	- b) If $z \in l^2(Z)$ and $\omega \in l^1(Z)$, prove that $(z * \omega) \wedge (\theta) = \hat{z}(\theta) \hat{w}(\theta)$ a.e.
- 15. If T : $L^2([- \pi, \pi)) \to L^2([- \pi, \pi))$ is a bounded, translation-invarient linear transformation, then show that there exists $\lambda_m \in C$ such that $T(e^{im\theta}) = \lambda_m e^{im\theta}$ for each $m \in Z$.
- 16. Suppose that $u, v \in l^1(Z)$. Show that $B = {R_{2k}v}_{k \in Z} \cup {R_{2k}u}_{k \in Z}$ is a complete orthonormal set in $l^2(Z)$ if and only if the system matrix $A(\theta)$ is unitary for all $\theta \in [0, \pi)$.

Unit $-$ III

- 17. Define approximate identity. Suppose $f \in L^1(R)$ and $\{g_t\}_{t>0}$ is an approximate identity. Then show that for every Lebesgue point x of f, $\lim_{t\to 0^+} g_t * f(x) = f(x)$.
- 18. Define Fourier transform and inverse Fourier transform on R. Suppose $f \in L^1(R)$ and $\hat{f} \in L^1(R)$, then show that $\frac{1}{2\pi} \int_R \hat{f}(\xi) e^{i\xi} d\xi = f(x)$ a.e. on R. Use this to establish the uniqueness of Fourier transform.
- 19. Suppose $f \in L^2(R)$, $\{f_n\}_{n=1}^{\infty}$ is a sequence of functions such that $f_n, \hat{f}_n \in L^1(R)$ for each n, and $f_n \to f$ in $L^2(R)$ as $n \to \infty$. Show that $\left\{\hat{f}_n\right\}_{n=1}^{\infty}$ converges to a unique $F \in L^2(R)$. Also, show that if $f \in L^1(R) \cap L^2(R)$, then $F = \hat{f}$.
- 20. If f, $g \in L^2(R)$, prove that $\langle \hat{f}, \hat{g} \rangle = 2\pi \langle f, g \rangle$ and $||\hat{f}|| = \sqrt{2\pi} ||f||$. If $f \in L^2(R)$ and if $\{f_n\}_{n=1}^{\infty}$ is a sequence of L² – functions such that $f_n \to f$ in L²(R) as $n \to \infty$, then prove that $\hat{f}_n \to \hat{f}$ in L²(R) as $n \to \infty$. (4×16= $(4 \times 16 = 64)$

K24P 1104

Second Semester M.Sc. Degree (C.B.C.S.S. – OBE – Regular) **Examination, April 2024** (2023 Admission) **MATHEMATICS MSMAT02C07/MSMAF02C07: Measure Theory**

Time: 3 Hours

Max. Marks: 80

 $PART - A$

ഹ ജ്യോക

- 1. Define Leabesgue outer measure. Show that $m^*(A) \le m^*(B)$ if $A \subseteq B$.
- 2. Show that every countable set has measure zero.
- 3. Show that if f is a non-negative measurable function, then $f = 0$ a.e. if and only if $\int f dx = 0$.
- 4. Prove that if f and g are measurable. If \leq |g| a.e., and g is integrable, then f is integrable.
- 5. Prove that every algebra is a ring, but that the converse is not true.
- 6. Define $L^p(\mu)$. Let $f, g \in L^p(\mu)$ and let a, b be constants. Then show that af + bg $\in L^p(\mu)$.

$PART - B$

Answer any three questions from this Part. Each question carries 7 marks. $(3x7=21)$

- 7. Show that there exists uncountable sets of zero measure.
- 8. Let E be a measurable set. Then prove that for every y the set $E + y = [x + y : x \in E]$ is measurable and the measures are the same.

<u> III di kacamatan ing Kabupatèn III di Ka</u>

K24P 1104

- 9. Show that $\int_{1}^{\infty} \frac{dx}{x} = \infty$.
- 10. If μ is a measure on a ring R and if the function μ^* is defined on H(R) by $\mu^*(E) = \inf \left[\sum_{n=1}^{\infty} \mu(E_n) : E_n \in \mathsf{R}, n = 1, 2, \ldots, E \subseteq \bigcup_{n=1}^{\infty} E_n \right],$ then prove that
	- i) for $E \in R$, $\mu^*(E) = \mu(E)$
	- ii) μ^* is an outer measure on $H(R)$.
- 11. Let $[[X, S, \mu]]$ be a measure space and f a non negative measurable function. Then prove that $\phi(E) = \int_E f d\mu$ is a measure on the measurable space $[[X, S]]$. Also prove that, if $\int f d\mu < \infty$ then $\forall \epsilon > 0$. $\exists \delta > 0$ such that, if $A \in S$ and $\mu(A) < \delta$, then $\phi(A) < \epsilon$.

PART-C

Answer any three questions from this Part. Each question carries 13 marks. (3x13=39)

- 12. State and prove Fatou's Lemma.
- 13. Show that the class M of Lebesque measurable sets is a σ -algebra.
- 14. Let $\{E_i\}$ be a sequence of measurable sets. Show that
	- a) if $E_1 \subseteq E_2 \subseteq ...$, then m(limE_i) = lim m(E_i)
	- b) if $E_1 \supseteq E_2 \supseteq ...$ and $m(E_i) < \infty$ for each i, then $m(limE_i) = lim m(E_i)$.
- 15. If μ is a σ -finite measure on a ring R, then prove that it has a unique extension to the σ -ring $S(R)$.
- 16. State and prove Holder's inequality. When does the equality occur? Justify.

K24P1106 **K24P 1106**

Reg. No.:

Name :

Second Semester M.Sc. Degree (CBCSS – OBE – Regular) Examination, April 2024 (2023 Admission) mathematics MSMAT02C08 : Advanced Real Analysis

Time : 3 Hours $\overbrace{\hspace{2.8cm}}^{\otimes n}$ and $\overbrace{\hspace{2.8cm}}^{\otimes n}$ and $\overbrace{\hspace{2.8cm}}^{\otimes n}$ Max. Marks : 80

Answer **five** questions from this Part. **Each** question carries **4** marks. **(5×4=20)**

part – A

1. Define pointwise convergence of a sequence of functions. For

 $m = 1, 2, ...$ n = 1, 2, 3, ... let $s_{m, n} = \frac{m}{m+n}$. Find $\lim_{n \to \infty} \lim_{m \to \infty} s_{m, n}$.

- 2. Prove that every uniformly convergent sequence of bounded functions is uniformly bounded.
- 3. Let E(z) = z n n $\sum_{n=0}$ n! . = ∞ ∑ $\frac{1}{2}$ Prove that $E(z + w) = E(z) + E(w)$, z, $w \in \mathbb{C}$.
- 4. If f is continuous with period 2π and if $\epsilon > 0$, prove that there is a trigonometric polynomial p such that $|p(x) - f(x)| < \epsilon$ for all real x.
- 5. Define norm of a linear transformation. If A, $B \in L(\mathbb{R}^n, \mathbb{R}^m)$, then prove that $||A + B|| \leq ||A|| + ||B||.$

6. If f(0, 0) = 0 and f(x, y) =
$$
\frac{xy}{x^2 + y^2}
$$
 if (x, y) \neq (0, 0), find D₁f(0, 0) and D₂f(0, 0).
PART – B

Answer **three** questions from this Part. **Each** question carries **7** marks. **(3×7=21)**

- 7. State and prove Cauchy criterion for uniform convergence of a sequence of functions.
- 8. Prove that there exists a real valued function on the real line which is nowhere differentiable.

K24P 1106 *K24P1106*

- 9. If K is compact, $f_n \in \mathcal{C}(K)$ for n = 1, 2, 3, and if $\{f_n\}$ is pointwise bounded and equicontinuous on K, then prove that ${f_n}$ contains a uniformly convergent subsequence.
- 10. Suppose $a_0, a_1, ..., a_n$, are complex numbers, $n \ge 1$, $a_n \ne 0$, $p(z) = \sum_{0}^{n} a_k z^k$. 0 ∑ Then prove that $p(z) = 0$ for complex number z.
- 11. Let X be a complex metric space and if ϕ is a contraction of X into X. Prove that there exists one and only one $x \in X$ such that $\phi(x) = x$.

$PART - C$

Answer **three** questions from this Part. **Each** question carries **13** marks. **(3×13=39)**

- 12. a) Suppose $f_n \rightarrow f$ uniformly on a set E in a metric space. Let x be a limit point of E, and suppose that $\lim_{t \to x} f_n(t) = A_n$, n = 1, 2, 3,... . Then prove that $\{A_n\}$ converges and $\lim_{t\to x} f(t) = \lim_{n\to\infty} A_n$.
	- b) Give an example of a series of continuous functions with a discontinuous sum.
- 13. Suppose ${f_n}$ is a sequence of functions differentiable on [a, b] and that ${f_n(x_0)}$ converges for some point x_0 on [a, b]. If ${f'_n}$ converges uniformly on [a, b] then prove that ${f_n}$ converges uniformly on [a, b] to a function f and $f'(x) = \lim_{n \to \infty} f'_n(x), \, a \le x \le b.$
- 14. a) Define the following terms :
	- i) algebra.
	- ii) uniformly closed algebra.
	- iii) uniform closure of an algebra.
	- b) Let $\mathscr B$ be the uniform closure of an algebra $\mathscr A$ of bounded functions, then prove that $\mathscr B$ is a uniformly closed algebra.

UNIVERS

- 15. State and prove Parseval's theorem.
- 16. State and prove inverse function theorem.

K24P1107 **K24P 1107**

Reg. No. :

Name :

Second Semester M.Sc. Degree (C.B.C.S.S. – OBE – Regular) Examination, April 2024 (2023 Admission) MATHEMATICS MSMAT02C09/MSMAF02C09 : Advanced Topology

Time : 3 Hours Max. Marks : 80

Answer **any 5** questions from the following 6 questions. **Each** question carries **4** marks.

 $R = \frac{1}{2} \sqrt{\frac{1}{2} \left(\frac{1}{2} \right)^{3/2}}$

- 1. Show that the set of integers is not well-ordered in the usual order.
- 2. Does the set of rationals Q is compact ? Justify your answer.
- 3. Show that the real line R has a countable basis.
- 4. Let f, $g: X \rightarrow Y$ be continuous; assume that Y is Hausdorff. Show that $\{x, f(x) = g(x)\}\$ is closed in X.
- 5. Give an example showing that a Hausdorff space with a countable basis need not be metrizable.
- 6. Show that the unit circle $S¹$ is a one-point compactification of the unit interval (0, 1). **(5×4=20)**

PART – B

Answer **any 3** questions from the following 5 questions. **Each** question carries **7** marks.

- 7. Prove the following : Every nonempty finite ordered set has the order type of a section $\{1, 2, ..., n\}$ of Z_{+} , so it is well-ordered.
- 8. Prove that every metrizable space is normal.

K24P 1107 *K24P1107*

- 9. a) Prove that the product of two Lindelof space need not be Lindelof.
	- b) Prove that a subspace of a Lindelof space need not be Lindelof.
- 10. Show that every locally compact Hausdorff space is regular.
- 11. Prove the following : Let $A \subset X$; let f : A \rightarrow Z be a continuous map of A in to the Hausdorff space Z. There is at most one extension of f to a continuous function $g : A \to Z$. **(3×7=21)**

PA $RT - C$

Answer **any 3** questions from the following 5 questions. **Each** question carries **13** marks.

- 12. Prove the following :
	- a) Every closed subspace of a compact space is compact.
	- b) Every compact subspace of a Hausdorff space is closed.
	- c) The image of a compact space under a continuous map is compact.

––––––––––––––––––

- 13. Prove the following :
	- a) A subspace of a Hausdorff space is Hausdorff.
	- b) A product of Hausdorff space is Hausdorff.
	- c) A product of regular space is regular.
- 14. State and prove The Urysohn lemma.
- 15. State and prove Tietze Extension Theorem.
- 16. State and prove Tychonoff Theorem. **(3×13=39)**