Cellular Respiration-Harvesting Chemical Energy

$C_6H_{12}O_6 + 6O_2 \longrightarrow 6H_2O + 6CO_2 + Energy$

- Organic compounds store energy
- Fats, carbohydrates, protein all can be used as fuel. Traditionally, cellular respiration is studied using glucose as the source.

- There are 2 energy-providing (catabolic) pathways
 - Cellular Respiration
 - Fermentation (partial degradation of sugar without oxygen)

(a) Alcohol fermentation

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

(b) Lactic acid fermentation

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

RESPIRATION IN PLANTS

Plants are aerobes

- Includes pathways that require oxygen
- Glucose is oxidized and O₂ is reduced
- Glucose breakdown is therefore an oxidation-reduction reaction

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

What Type of Process is Cellular Respiration?

- An Oxidation-Reduction Process or REDOX Reaction
- Oxidation of GLUCOSE --> CO₂ + H₂O (e⁻ removed from C₆H₁₂O₆)
- Reduction O₂ to H₂O (e⁻ passed to O₂)

What are the Stages of Cellular Respiration?

- Glycolysis
- The Krebs Cycle
- The Electron Transport Chain

Where Does Cellular Respiration Take Place?

- It actually takes place in two parts of the cell:
 - Glycolysis occurs in the Cytoplasm
 - Krebs Cycle & ETC Take place in the Mitochondria

Overall Equation for Cellular Respiration

Glycolysis

Splits a glucose molecule into two 3 Carbon molecules called PYRUVATE.

products: 2 ATP, NADH and pyruvate

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Glycolysis Summary

Takes place in the Cytoplasm

Anaerobic (Doesn't Use Oxygen)

Requires input of 2 ATP

Glucose split into two molecules of Pyruvate or Pyruvic Acid

Glycolysis Summary

- Also produces 2 NADH and 4 ATP
- Pyruvate is oxidized to Acetyl CoA and CO₂ is removed

Preparation for the Citric Acid Cycle

The pyruvate looses a carbon leaving the 2 carbon molecule Acetyl CoA

products: CO₂, Acetyl CoA and NADH

Next stage- Krebs Cycle

- Requires Oxygen (Aerobic)
- Cyclical series of oxidation reactions that give off CO₂ and produce one ATP per cycle
- Turns twice per glucose molecule
- Produces two ATP
- Takes place in matrix of mitochondria

A Little Krebs Cycle History

- Discovered by Hans Krebs in 1937
- He received the Nobel Prize in physiology or medicine in 1953 for his discovery

OXIDATIVE PHOSPHORYLATION

- The last stage of respiration
- ADP is phosphorylated to ATP
- Electron transfer in the electron transport chain causes proteins to pump H⁺ from the mitochondrial matrix to the intermembrane space
- H⁺ then moves back across the membrane, through channels in ATP synthase
- ATP synthase uses the flow of H⁺ to drive phosphorylation of ADP

Complex I – NADH dehydrogenase

Complex II – Succinate dehydrogenase

Matrix

Complex III – Cytochrome bc1

Complex IV – Cytochrome oxidase

ATP synthase

Stoichiometry of Coenzyme Reduction and ATP Formation in the Aerobic Oxidation of Glucose via Glycolysis, the Pyruvate Dehydrogenase Complex Reaction, the Citric Acid Cycle, and Oxidative Phosphorylation

Reaction	Number of ATP or reduced coenzyme directly formed	Number of ATP ultimately formed*
	4 475	
Glucose \longrightarrow glucose 6-phosphate	-1 AIP	-1
Fructose 6-phosphate \longrightarrow fructose 1,6-bisphosphate	-1 ATP	-1
2 Glyceraldehyde 3-phosphate \longrightarrow 2 1,3-bisphosphoglycerate	2 NADH	5
2 1,3-Bisphosphoglycerate \longrightarrow 2 3-phosphoglycerate	2 ATP	2
2 Phosphoenolpyruvate → 2 pyruvate	2 ATP	2
2 Pyruvate —→ 2 acetyl-CoA	2 NADH	5
2 Isocitrate \longrightarrow 2 α -ketoglutarate	2 NADH	5
2 α -Ketoglutarate \longrightarrow 2 succinyl-CoA	2 NADH	5
2 Succinyl-CoA \longrightarrow 2 succinate	2 ATP (or 2 GTP)	2
2 Succinate → 2 fumarate	2 FADH ₂	3
2 Malate \longrightarrow 2 oxaloacetate	2 NADH	5
Total		32

RESPIRATORY QUOTIENT(RQ)

• Also called respiratory coefficient.

• It is estimated from carbon dioxide production.

• It is measured using Ganong's Respirometer

RQ is calculated from the ratio;

$$RQ = \underline{CO}_{2 \ ELIMINATED}$$
$$O_{2 \ CONSUMED}$$

- The CO₂ and O₂ must be given in the same units
- Respiratory substrates include fatty acids, glycerol, carbohydrates, and ethanol.

 The range of respiratory coefficients for organisms in metabolic balance usually ranges from 1.0 (the value expected for pure carbohydrate oxidation) to ~0.7

RQ MAY DEVIATE FROM UNITY WHEN;

1.Respiratory substrate is other than carbohydrates.

2.Carbohydrates and other respiratory substrates are partially oxidised.

3.Oxygen absorbed is used in a process other than respiration.

4.CO₂ formed is utilized metabolically instead of being given out.

Carbohydrates

- When they oxidised in respiration value of RQ is 1 or unity.
- Because,volume of CO₂ evolved equals to the volume of O₂ as is shown by the following equation;
- $6C_6H_{12}O_6+6O_2 \rightarrow 6CO_2 + 6H_2O$

 $RQ=\underline{Vol.of CO_2} = \underline{6} = 1 \text{ or unity}$ Vol.of O₂ 6

Fats

- When these are substrates, value of RQ becomes less than 1.
- Because fats are poorer in O₂ in comparison to carbon and they require more O₂ for their oxidation.

 $\begin{array}{l} 2C_{51}H_{98} \hspace{0.1cm} O_{6} \hspace{0.1cm} + \hspace{-0.1cm} 145 \hspace{0.1cm} O_{2} \hspace{0.1cm} \longrightarrow \hspace{-0.1cm} 102CO_{2} \hspace{0.1cm} + \hspace{-0.1cm} 98H_{2}O \\ \\ Tripalmitin \end{array}$

RQ= <u>Vol.of CO₂</u> = <u>102</u>=0.7 (less than 1) Vol.of O₂ 145

RQ OF SOME SUBSTANCES

Name of the substance

- 1. Carbohydrates
- 2. Proteins
- 3. Ketones
- 4. Triolein (Fat)
- 5. Oleic Acid (Fat)
- 6. Tripalmitin (Fat)
- 7. Malic acid
- 8. Tartaric acid
- 9. Oxalic acid

Respiratory quotient

- 1
- 0.8 0.9
- 0.73
- **0.7**
- 0.71
- ⁻ 0.7
- 1.33
- ⁻ 1.6
- **4.0**

Inhibitors of respiration

Inhibitors of electron transport chain rotenone $\rightarrow Q \longrightarrow Cyt \ b \longrightarrow Cyt \ c_1 \longrightarrow Cyt \ c \longrightarrow Cyt \ (a + a_3) \longrightarrow O_2$ antimycin A $\bigotimes_{\text{Cyt } c_1} \longrightarrow \text{Cyt } c \longrightarrow \text{Cyt } (a + a_3) \longrightarrow O_2$ NADH $\longrightarrow Q \longrightarrow Cyt b$ CN⁻ or CO NADH \longrightarrow Q \longrightarrow Cyt $b \longrightarrow$ Cyt $c_1 \longrightarrow$ Cyt $c \longrightarrow$ Cyt $(a + a_3)$

Thank you.....