ALGEBRA NET MATERIAL

 Let GL(n,q) be the group of all n×n invertible matrices over the finite field Fq, where q = p^m, p is a prime and some positive integer m. Then

$$(i)O(GL(n,q)) = q^{\frac{n(n-1)}{2}}(q^n-1)(q^{n-1}-1)\cdots(q-1).$$

(ii) Order of Sylow p-subgroup of GL(n, q) is $q^{\frac{n(n-1)}{2}}$.

(iii)
$$O(SL(n, q)) = \frac{q^{\frac{n(n-1)}{2}}(q^n - 1)(q^{n-1} - 1) \cdots (q - 1)}{(q - 1)}$$
.

- The center Z(GL(n,q)) = {kI_n | k ∈ F^{*}_q}, where I_n is the identity matrix.
- The centralizer (normalizer)

$$N(SL(n, q)) = \{kI_n \mid k \in \mathbb{F}_q^* \text{ and } k^n = 1\}.$$

- 4. $Z(SL(n, q)) = \{kI_n \mid k \in \mathbb{F}_q^* \text{ and } k^n = 1\}.$
- 5. |Z(SL(n, q))| = qcd(n, q 1).
- Let G be a finite group and a ∈ G. Then O(cl(a)) = O(G)/O(N(a)).

7.
$$\frac{G}{Z(G)} \cong I(G)$$
.

- 8. In S_n , the number of distinct cycles of length r is $\frac{n!}{r(n-r)!}$ $(r \leq n)$.
- Converse of Lagrange's theorem holds in finite cyclic groups and prime power order.

10.
$$Z(G) = \bigcap_{a \in G} N(a)$$
.

- The number of group homomorphism from Z_m to Z_n is gcd(m, n).
- Let G be an infinite cyclic group. Then | Aut(G) |= 2.
- Let G be a finite cyclic group of order n. Then | Aut(G) |= φ(n).
- 14. $Aut(S_n) \cong S_n$, $Z(S_n) = \{I\}$ for $n \geq 3$ and $n \neq 6$.
- 15. $Aut(\underline{\mathbb{Z}} \oplus \underline{\mathbb{Z}} \oplus \cdots \oplus \underline{\mathbb{Z}}) \cong GL(n, \underline{\mathbb{Z}}).$

16.
$$Aut(\underline{\mathbb{Z}_{p^m} \oplus \mathbb{Z}_{p^m} \oplus \cdots \oplus \mathbb{Z}_{p^m}}) \cong GL(n, \mathbb{Z}_{p^m}).$$
 $n \text{ times}$

- 17. $Aut(\mathbb{Z}_2 \oplus \mathbb{Z}_4) \cong D_8$.
- If G has order n > 1, then |Aut(G)| ≤ ∏ (n − 2ⁱ) where k = [log₂(n − 1)].
- Let p be a prime number, and let G be a finite abelian group in which every element has order p. Then Aut(G) ≅ GL(n, Zp), where n is the dimension of G over Zp.
- If G is a group of order n and F is any field, then GL(n, F) contains a subgroup isomorphic to G.
- 21. Let G = G₁ × G₂ × · · · × G_n, where the G_i are abelian groups. Then Aut(G) is isomorphic with the group of all invertible n × n matrices whose (i, j) entries belong to Hom(G_i, G_j), the usual matrix product begin the group operation.
- If O(G) = p²q² and q ∤ p² − 1, p ∤ q² − 1, then G is abelian.
- 23. G is a finite group of order p²q where p and q are distinct primes such that p² ≠ 1(modq) and q ≠ 1(modp). Then G is an abelian group. If p divides q − 1, then any group of order p²q is abelian.
- If p does not divide | Aut(G) |, then any group of order pq² is abelian.
- If G is a non-abelian finite group, then |Z(G)| ≤ ½|G|.
- If H and K are subgroups of a finite group G satisfying (|G: H|, |G: K|) = 1, then G = HK.
- If G is a simple group of order 60, then G is isomorphic to A₅.
- Let G be a group of order pqr, where p > q > r are primes. If p − 1 is not divisible by q or r and q − 1 is not divisible by r, then G must be abelian (hence cyclic).
- Abelian groups have exactly one Sylow p-subgroup for each p.
- The class equation of G is

$$O(G) = O(Z(G)) + \sum_{a \notin Z(G)} \frac{O(G)}{O(N(a))}$$

- Let G be a non-abelian group of order p³. The number of conjugate classes of G is p² + p - 1.
- 32. Let G be a finite group of order n and p be a prime number such that p > n/p. Then any subgroup of order p in G is normal in G.
- 33. Let G be a finite group of order n and p be a prime number such that p² does not divide n. Then any subgroup of order p in G is normal in G.
- The number of non-isomorphic abelian groups of order pⁿ, (p a prime) is p(n) (partition of n).
- 35. The number of groups of order n is at most n^{nlog_2n} .