

Reg.	No.	:	•••••	 	•••••	
Nam	Δ.					

V Semester B.Sc. Degree (C.B.C.S.S. – O.B.E. – Regular/Supplementary/ Improvement) Examination, November 2023 (2019-2021 Admissions)

CORE COURSE IN MATHEMATICS

5B05 MAT : Set Theory, Theory of Equations and Complex Numbers

Time: 3 Hours Max. Marks: 48

PART - A

Answer any 4 questions from this part. Each question carries 1 mark. (4×1=4)

- 1. Give example for a denumerable set.
- 2. If α , β , γ are the root of the equation f(x) = 0, then the equation whose roots are $-\alpha$, $-\beta$, $-\gamma$ is _____
- 3. Show that $x^5 2x^2 + 7 = 0$ has atleast two imaginary roots.
- 4. If ω is an imaginary cube root of unity, then the value of $1 + \omega + \omega^2$ is _____
- 5. What is the value of Arg z for positive real axis, z = x?

PART - B

Answer any 8 questions from this part. Each question carries 2 marks. (8×2=16)

- 6. Show that the set of all integers is countable.
- 7. If α , β , γ are the root of the equation $ax^3 + bx^2 + cx + d = 0$, then find the values of $\alpha + \beta + \gamma$ and $\alpha\beta\gamma$.
- 8. Find the condition that the cubic equation $x^3 lx^2 + mx n = 0$ should have its roots in arithmetical progression.
- 9. If α , β , γ are the root of the equation $8x^3 4x^2 + 6x 1 = 0$, find the equation whose roots are $2\alpha + 1$, $2\beta + 1$, $2\gamma + 1$.
- 10. State De Gua's rule.
- 11. What do you mean by reciprocal equation? Give an example.

K23U 2365

- 12. Describe the discriminant of the cubic equation $ax^3 + 3bx^2 + 3cx + d = 0$.
- 13. Transform $x^3 6x^2 + 5x + 12 = 0$ into an equation lacking the second term.
- 14. If a, b, c are the roots of the cubic equation $x^3 + px^2 + qx + r = 0$, find the value of $\frac{1}{a^2b^2} + \frac{1}{b^2c^2} + \frac{1}{c^2a^2}$.
- 15. What are the imaginary cube root of unity?
- 16. Find the polar form of z = 1 + i.

Answer any 4 questions from this part. Each question carries 4 marks. (4×4=16)

- 17. If A is a set with m elements and B is a set with n elements and if $A \cap B = \phi$, then prove that $A \cup B$ has m + n elements.
- 18. Solve the equation $x^4 2x^3 + 4x^2 + 6x 21 = 0$, given that the sum of the two of its roots is zero.
- 19. Find the rational roots of $x^4 39x^2 + 46x 168 = 0$.
- 20. Solve $6x^5 + 11x^4 33x^2 + 11x + 6 = 0$.
- 21. Describe the behaviour of roots of a cubic equation in terms of its discriminant.
- 22. Find the value of $\sqrt{1+i}$.
- 23. Find the fifth root of (-1).

Answer any 2 questions from this part. Each question carries 6 marks. (2×6=12)

- 24. State and prove Cantor's theorem.
- 25. If α , β , γ are the root of the equation $ax^3 + 3bx^2 + 3cx + d = 0$, then find the values of

a)
$$(\alpha^2 + 1) (\beta^2 + 1) (\gamma^2 + 1)$$

b)
$$(\beta - \gamma) (\gamma - \alpha) + (\gamma - \alpha) (\alpha - \beta) + (\alpha - \beta) (\beta - \gamma)$$
.

- 26. Find a real root of the $x^3 + x^2 16x + 20 = 0$.
- 27. If z_1 and z_2 are two complex numbers, prove that

a)
$$|z_1 z_2| = |z_1| |z_2|$$

b) arg
$$(z_1z_2) = arg z_1 + arg z_2$$
.

Reg. No.:

Name :

V Semester B.Sc. Degree (C.B.C.S.S.-O.B.E.-Regular/Supplementary/ Improvement) Examination, November 2023 (2019 – 2021 Admissions) CORE COURSE IN MATHEMATICS 5B06 MAT: Real Analysis – I

Time: 3 Hours Max. Marks: 48

PART - A

Answer any 4 questions. They carry 1 mark each.

 $(4 \times 1 = 4)$

- 1. State Triangle Inequality.
- 2. Find $\lim_{n \to \infty} \left(1 + \frac{1}{2n}\right)^n$.
- 3. Define m-tail of a sequence.
- 4. Define continuity of a function at a point.
- 5. Define Rearrangement of the series.

PART - B

Answer **any 8** questions from among questions **6** to **16**. These questions carry **2** marks **each**. **(8×2=16)**

- 6. Determine the set A of $x \in R$ such that |2x + 3| < 8.
- 7. If $a \in R$ and $a \neq 0$ then show that $a^2 > 0$.
- 8. Discuss the convergence of $\lim \left(\frac{n}{2^n}\right)$.
- 9. Find the limit of the sequence whose terms are given by $x_1 = 8$, $x_{n+1} = \frac{x_n}{2} + 2$ for $n \in \mathbb{N}$.
- 10. State Monotone Convergence Theorem.
- 11. Define subsequence of a sequence with an example.
- 12. State Alternating Series test.

K23U 2366

- 13. Define convergent Series.
- 14. If $\sum a_n$ with $a_n > 0$ is convergent, then is $\sum \sqrt{a_n}$ always convergent. Justify.
- 15. Show that $f(x) = \frac{1}{x}$ defined on $A = (0, \infty)$ is unbounded on A.
- 16. State Boundedness Theorem.

Answer **any 4** questions from among questions **17** to **23**. These questions carry **4** marks **each**. (4×4=16)

- 17. Show that cosine function is continuous on R.
- 18. Discuss the convergence of $\sum_{n=0}^{\infty} r^n$, $r \in \mathbb{R}$, |r| < 1.
- 19. Discuss the convergence of $\sum_{n=1}^{\infty} \frac{n}{n^2 + 1}$.
- 20. Discuss the convergence of the sequences
 - a) $((-1)^n)$ and
 - b) (n).
- 21. Show that Cauchy sequence of real numbers is bounded.
- 22. State and prove Archimedean property.
- 23. If a and b are positive real numbers, $a \neq b$ then show that $\sqrt{ab} \leq \frac{(a+b)}{2}$.

Answer **any 2** questions from among questions **24** to **27**. These questions carry **6** marks **each**. (2×6=12)

- 24. State and prove density theorem of rational numbers in R.
- 25. State and prove Squeeze theorem for sequences. Hence find $\lim \left(\frac{\sin n}{n}\right)$.
- 26. Discuss the convergence of

a)
$$\sum_{n=0}^{\infty} \frac{1}{(n+1)(n+2)}$$

b)
$$\sum_{n=1}^{\infty} \frac{(\cos n)}{n^2}.$$

- 27. Discuss the continuity of
 - a) Dirichlet's function
 - b) Thomae's function.

Reg. No.:....

Name:

V Semester B.Sc. Degree (C.B.C.S.S. – O.B.E. – Regular/Supplementary/ Improvement) Examination, November 2023 (2019-2021 Admissions) CORE COURSE IN MATHEMATICS 5B07 MAT : Abstract Algebra

Time: 3 Hours Max. Marks: 48

PART - A

Answer any 4 questions from this Part. Each question carries 1 mark: (4×1=4)

- 1. Give an example of a finite group that is not cyclic.
- 2. Find the order of the element 4 in Z₆.
- 3. What is the order of the permutation (124) (23) in S_{6} ?
- 4. Define Kernel of a homomorphism.
- 5. Find all solutions of the equation $x^2 + 2x + 2 = 0$ in Z_s .

PART - B

Answer any 8 questions from this Part. Each question carries 2 marks: (8×2=16)

- 6. Find the group table of the Klein 4-group. List all its subgroups.
- 7. Show that every cyclic group is abelian. Discuss its converse.
- 8. Let S be the set of all real numbers except -1. Define * on S by a + b = a + b + ab. Check whether (S,*) is a group or not.
- 9. Find all the generators of Z_{18} .

- 10. Find the number of elements in the set $\{\sigma \in S_5 | \sigma(2) = 5\}$.
- 11. Define odd permutation. Give an example of an odd permutation in S_4 .
- 12. Prove that a group homomorphism ϕ defined on G is one-to-one if and only if $ker(\phi) = \{e\}$.
- 13. Consider $\gamma: Z \to Z_n$ by $\gamma(m) = r$, where r is the remainder when m divided by n. Show that γ is a group homomorphism. What is its kernel?
- 14. Show that the cancellation law with respect to multiplication hold in a ring R if and only if R has no divisors of zero.
- 15. Show that every field is an integral domain. Discuss its converse.
- 16. Define characteristic of a ring. What is the characteristic of the ring Z_6 ?

PART - C

Answer any 4 questions from this Part. Each question carries 4 marks: (4×4=16)

- 17. Let G be a group and let a be one fixed element of G. Show that the set $H_a = \{x \in G | xa = ax\}$ is a subgroup of G.
- 18. Show that every permutation of a finite set can be written as a product of disjoint cycles.
- 19. Let G be a group of order pq, where p and q are prime numbers. Show that every proper subgroup of Z_{pq} is cyclic.
- 20. Let H be a subgroup of a group G such that $ghg^{-1} \in H$ for all $g \in G$ and all $h \in H$. Show that gH = Hg.
- 21. Let $\phi: G \to G'$ be a group homomorphism with kernel H and let $a \in G$. Show that $\{x \in G | \phi(x) = \phi(a)\} = aH$.
- 22. Show that the map $\varphi:Z\to Z_n$ where $\varphi(a)$ is the remainder of a modulo n is a ring homomorphism.
- 23. An element a of a ring R is idempotent of $a^2 = a$. Show that a division ring contains exactly two idempotent elements.

PART - D

Answer any 2 questions from this Part. Each question carries 6 marks: (2×6=12)

- 24. State and prove Cayley's theorem.
- 25. Let H be a subgroup of a group G. Then show that the left coset multiplication (aH) (bH) = abH is well-defined if and only if H is a normal subgroup of G.
- 26. Show that if a finite group G has exactly one subgroup H of a given order, then H is a normal subgroup of G.
- 27. Show that the characteristic of an integral domain must be 0 or a prime number. Give examples of two non-isomorphic rings with characteristic 4.

Reg. No.:

Name :

V Semester B.Sc. Degree (CBCSS – O.B.E. – Regular/Supplementary/ Improvement) Examination, November 2023 (2019 – 2021 Admissions) CORE COURSE IN MATHEMATICS 5B08 MAT: Differential Equations and Laplace Transforms

Time: 3 Hours Max. Marks: 48

PART – A
(Short Answer)

Answer any four questions from this Part. Each question carries 1 mark. (4×1=4)

- 1. Solve the differential equation $y' = 1 + y^2$.
- 2. Check whether the equation -ydx + xdy = 0 is exact.
- 3. Give an example of a non-homogeneous differential equation.
- 4. Solve y'' y = 0.
- 5. State the linearity property of the Laplace transform.

PART – B (Short Essay)

Answer any eight questions from this Part. Each question carries 2 marks. (8×2=16)

- 6. Find the order and degree of the differential equation $\frac{d^2y}{dx^2} + \left[1 + \left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}} = 0$.
- 7. Prove that e^x is an integrating factor of siny $dx + \cos y dy = 0$ and solve it.

- 8. Find the orthogonal trajectories of the curve $y = ce^{-x}$.
- 9. State the existence theorem of first order differential equations.
- 10. Solve the initial value problem y'' y' 2y = 0, y(0) = -4, y'(0) = -17.
- 11. Check whether the solutions x^2 and x^2 Inx are linearly independent.
- 12. Find the Laplace transform of $a + bt + ct^2$.
- 13. Solve y'' + 25 y = 0.
- 14. Find the inverse Laplace transform of $\frac{12}{(s-3)^4}$.
- 15. Write the standard form of Euler Cauchy equation. Give an example.
- 16. Solve $2x \tan y dx + \sec^2 y dy = 0$.

PART – C

(Essay)

Answer any four questions from this Part. Each question carries 4 marks. (4×4=16)

- 17. Find the general solution of $y' y = e^{2x}$.
- 18. Solve $y'' + 2y' + y = x^2$.
- 19. Let f(t) = t sinwt, find the Laplace transform of f(t).
- 20. Check for exactness and solve the initial value problem, $ye^{x}dx + (2y + e^{x})dy = 0$, y(0) = -1.
- 21. Solve $y' = (y + 4x)^2$.
- 22. Solve $(\cot y + x^2)dx = x\csc^2 ydy$.
- 23. Solve $y'' + y = \sec x$.

PART – D

(Long Essay)

Answer any two questions from this Part. Each question carries 6 marks. (2×6=12)

24. Using Laplace transforms, solve the integral equation, $y(t) = 1 - \int_0^t (t - \tau) y(\tau) d\tau$.

25. Solve $4x^2D^2 + 24xD + 25y = 0$, y(1) = 2, y'(1) = -6.

26. Solve $y'' + 2y' + 5y = 1.25e^{0.5x} + 40 \cos 4x - 55 \sin 4x$, y(0) = 0.2, y'(0) = 60.1.

27. Find an integrating factor and solve the initial value problem

$$2\sin(y^2)dx + xy\cos(y^2)dy = 0, \ y(2) = \sqrt{\frac{\pi}{2}} \ .$$

Reg. No.:....

Name:

V Semester B.Sc. Degree (CBCSS – OBE – Regular/Supplementary/ Improvement) Examination, November 2023 (2019 – 2021 Admissions) CORE COURSE IN MATHEMATICS 5B09MAT: Vector Calculus

Time: 3 Hours Max. Marks: 48

PART – A (Short Answer Questions)

Answer any four questions from this Part. Each question carries 1 mark. (4×1=4)

- 1. Find the parametric equation for the line through (3, -4, -1) parallel to the vector v = i + j + k.
- 2. Find the distance from the point (2, -3, 4) to the plane x + 2y + 2z = 13.
- 3. Find the gradient of the function $f(x, y) = xy^2$ at the point (2, -1).
- 4. Evaluate $\int_C (x + y)ds$, where C is the straight line segment x = t, y = 1 t, z = 0 from (0, 1, 0) to (1, 0, 0).
- 5. Define Divergence Theorem.

PART – B (Short Essay Questions)

Answer any eight questions from this Part. Each question carries 2 marks. (8x2=16)

- 6. Find the length of the portion of the curve $r(t) = 4\cos t i + 4\sin t j + 3t k$, $0 \le t \le \frac{\pi}{2}$.
- 7. Find the curvature of $r(t) = 3\sin t i + 3\cos t j + 4t k$.

- 8. Find the directions in which $f(x,y) = \frac{x^2}{2} + \frac{y^2}{2}$ increases more rapidly at (1, 1).
- 9. Find the plane tangent to the surface $z = x\cos y ye^x$ at (0, 0, 0).
- 10. Find the work done by the force field F = xi + yj + zk in moving an object along the curve C parametrized by $r(t) = \cos(\pi t)i + t^2j + \sin(\pi t)k$, $0 \le t \le 1$.
- 11. Find the scalar potential of the vector field F = 2xi + 3yj + 4zk.
- 12. Find the Curl of $F = (x^2 z)i + xe^z j + xyk$.
- 13. Find the critical points of the function $f(x, y) = x^2 + y^2 4y + 9$.
- 14. Find the Divergence of the vector field $F = (y^2 x^2)i + (x^2 + y^2)j$.
- 15. Integrate $G(x, y, z) = x^2$ over the cone $z = \sqrt{x^2 + y^2}, 0 \le z \le 1$.
- 16. Evaluate $\int_C y^2 dx + x^2 dy$, C: $x^2 + y^2 = 4$.

PART – C (Essay Questions)

Answer any four questions from this Part. Each question carries 4 marks. (4×4=16)

- 17. Find the angle between the planes 2x + 2y + 2z = 3, 2x 2y z = 5.
- 18. Find the unit tangent vector of the curve $r(t) = \sin t i + (3t^2 \cos t)j + e^t k$, at $t_0 = 0$.
- 19. Find the derivative of $f(x, y, z) = x^3 xy^2 z$ at (1, 1, 0) in the direction of v = 2i 3j + 6k.
- 20. Verify Green's theorem for F = -yi + xj over the circle C: acost i + asint j, $0 \le t \le 2\pi$.

- 21. Verify Divergence theorem for F = xi + yj + zk over the sphere $x^2 + y^2 + z^2 = a^2$.
- 22. Find the linearization L(x, y, z) of $f(x, y, z) = x^2 xy + 3\sin z$ at the point (2, 1, 0).
- 23. Integrate G (x, y, z) = xyz over the surface of the cube cut from the first octant by the planes x = 1, y = 1, z = 1.

PART – D (Long Essay Questions)

Answer any two questions from this Part. Each question carries 6 marks. (2×6=12)

24. Find the curvature and torsion of the curve

$$r(t) = (cost + tsint)i + (sint - tcost)j, t > 0.$$

- 25. Find the local extreme values of the function $f(x, y) = xy x^2 y^2 2x 2y + 4$.
- 26. Show that ydx + xdy + 4dz is exact and evaluate the integral

 $\int y dx + x dy + 4 dz$ over any path from (1, 1, 1) to (2, 3, -1).

27. Find the center of mass of a thin hemispherical shell of radius a and constant density δ .