

Reg. No.:	
Nome	

Second Semester B.Sc. Degree (CBCSS – OBE-Regular/Supplementary/ Improvement) Examination, April 2024 (2019 Admission Onwards) CORE COURSE IN MATHEMATICS 2B02 MAT: Integral Calculus and Logic

Time: 3 Hours Max. Marks: 48

UNIT - I

Short answer type. Answer any 4 questions. Each question carries 1 mark. (4×1=4)

- 1. Define hyperbolic cosine of x.
- 2. Write the equation of the circle of radius |a| centered at O in polar co-ordinates.
- 3. Find the Cartesian equivalent of the Polar equation $r \cos \theta = 2$.
- 4. Define a statement.
- 5. What you mean by a contingency?

Short essay type. Answer any 8 questions. Each question carries 2 marks. (8×2=16)

- 6. Prove that $\cosh^2 x \sinh^2 x = 1$.
- 7. Integrate log x.
- 8. Find the Cartesian equivalent to the polar equation $r \cos \left(\theta \frac{\pi}{4}\right) = \sqrt{2}$.
- 9. Evaluate $I = \int_{0.0}^{1.2} \int_{0}^{2} xy(x-y) dxdy$.
- 10. Find the area bounded between the curve $y = x^2$ above the x-axis and below the line y = 2.

K24U 1619

-2-

- 11. Define the error of approximation.
- 12. Write the formula using in Simpson's 1/3 rule of integration.
- 13. Find the conjunction of the propositions p and q where p is the proposition "Today is Friday" and q is the proposition "It is raining today".
- 14. Let $a \ge 0$ be a real number. If for every $\varepsilon > 0$, we have $0 \le a < \varepsilon$, then prove that a = 0.
- 15. Prove that the square of an odd integer is also an odd integer.
- 16. Examine that the following argument is valid: p, p \rightarrow q \vdash q.

Essay type. Answer any 4 questions. Each question carries 4 marks. (4×4=16)

- 17. Evaluate ∫ coth 5xdx.
- 18. Show that $\int \frac{\sin^4 x}{\cos^2 x} dx = \frac{\sin^3 x}{\cos x} + \frac{3}{2} \sin x \cos x \frac{3}{2} x$.
- 19. Evaluate $\iint_S (x^2 + y^2) dx dy$ over the region S in which $x \ge 0$; $y \ge 0$ and $x + y \le 1$.
- 20. Find the volume of $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.
- 21. Evaluate $\int_0^2 \frac{dx}{x^2 + 2x + 10}$. Using Simpson's rule with n = 2, 4. Compare with the exact solutions.
- 22. Show that $\neg(p \lor q)$ and $\neg p \land \neg q$ are logically equivalent.
- 23. Show that the hypothesis "If you send me an e-mail message, then I will finish writing the program," "If you do not send me an e-mail message, then I will go to sleep early," and "If I go to sleep early, then I will wake up feeling refreshed" lead to the conclusion "If I do not finish writing the program, then I will wake up feeling refreshed."

UNIT - IV

Long essay type. Answer any 2 questions. Each question carries 6 marks. (2×6=12)

- 24. If $U_n = \int_0^{\pi/2} \theta \sin^n \theta d\theta$ and n > 1, prove that $U_n = \frac{1}{n^2} + \frac{n-1}{n} U_{n-2}$. Deduce that $U_5 = \frac{149}{225}$.
- 25. Use triple integration in cylindrical coordinates to find the volume and the centroid of the solid G that is bounded above by the hemisphere $z = \sqrt{25 x^2 y^2}$, below by the xy-plane, and laterally by the cylinder $x^2 + y^2 = 9$.
- 26. Evaluate $\int_0^1 \frac{dx}{3+2x}$, using trapezoidal rule with n = 2, 4. Compare with the exact solution. Find the bound on the error. Also, find the number of sub-intervals required if the error is to be less than 5×10^{-4} .
- 27. Prove that the following argument is valid : $p \rightarrow \neg q$, $r \rightarrow q$, $r \rightarrow p$.

