

Reg. N	10).	:		 	 	 	 -	 	 -	 -	 -	
Name	:			 	 	 	 	 	 	 	 		

III Semester B.Sc. Degree (CBCSS – OBE – Regular/Supplementary/ Improvement) Examination, November 2023 (2019 to 2022 Admissions)

COMPLEMENTARY ELECTIVE COURSE IN CHEMISTRY/POLYMER CHEMISTRY

3C03CHE/PCH(BS) : Chemistry (For Biological Science)

Time: 3 Hours Max. Marks: 32

Instruction: Answer the questions in **English** only.

SECTION - A

Very short answer type. **Each** carries **1** mark. Answer **all 5** questions.

- 1. Give an example for thermoplastics.
- 2. Write one example for a nucleophile.

3. _____ is constant in an isochoric process.

4. Equation for the half-life of first order reaction is _____.

5. Give an example for chelate ligand.

 $(5 \times 1 = 5)$

SECTION - B

Short answer type. Each carries 2 marks. Answer any 4 questions out of 6.

- 6. State Markownikoff rule.
- 7. Explain $S_N 1$ mechanism with example.
- 8. Define heat capacity.
- 9. State and explain Werners theory of co-ordination.
- 10. Define chirality with example.
- 11. Name the co-ordination compounds:

 $[CO(NH_3)_2CI_2]$ and $[Ni(H_2O)_6]^{2+}$.

 $(4 \times 2 = 8)$

SECTION - C

Short essay type. Each carries 3 marks. Answer any 3 questions out of 5.

- 12. State and explain Walden inversion.
- 13. What is optical isomerism? Explain with example.
- 14. Give an account of synthetic fibres.
- 15. The half-life of first order reaction is 100 seconds, if the initial concentration of the reaction is $2\text{mol }L^{-1}$. How much of it will be consumed in 250 seconds?
- 16. If the change in internal energy for the process $MCO_3 \rightarrow MO + CO_2$ is 105 KJ at 400 K and 1 atm. pressure, calculate enthalpy change. (3×3=9)

SECTION - D

Long essay type. Each carries 5 marks. Answer any 2 questions out of 4.

- 17. a) What are the factors affecting the stability of co-ordination compounds?
 - b) Give applications of co-ordination compounds.

(3+2)

- 18. a) Explain the difference between enantiomer and diastereomers.
 - b) Discuss the optical isomerism of lactic acid.

(3+2)

- 19. a) Explain mechanism of S_N2 reaction.
 - b) Discuss the concept of spontaneous and non-spontaneous process.
- 20. a) What are the factors affecting the rate of reaction?
 - b) Explain the collision theory of reaction.

(2+3)

(3+2)

 $(2 \times 5 = 10)$

Reg.	No.	:	•••••	 	 ••••	•	•••	••
Nam	٠.							

III Semester M.Sc. Degree (CBSS – Reg./Sup./Imp.) Examination, October 2022 (2019 Admission Onwards) CHEMISTRY

CHE 3C.09: Organic Chemistry - III

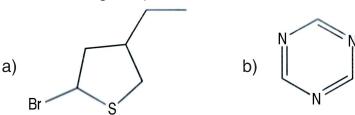
Time: 3 Hours Max. Marks: 60

SECTION - A

Answer all questions in one word or one sentence. Each question carries 1 mark.

- 1. Aniline absorption shifts from 230 nm in neutral medium to 203 nm in acidic medium. Why?
- 2. What is the significance of the fingerprint region in the IR spectra?
- 3. How many different types of protons are there in allyl chloride?
- 4. Predict the number of peaks on the ¹³C NMR spectrum of p-dimethoxy benzene and m-dimethoxy benzene.
- 5. What are the major fragments and their m/z values in the mass spectrum of nitrobenzene?
- 6. What is a metastable ion? What is its significance?
- 7. Draw the structure of coumarin. What is its use in medicine?
- 8. Sketch the structures of the pyrimidine bases present in DNA. (8×1=8)

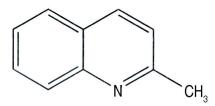
SECTION - B


Answer **any 8** questions. Answer may be **two** or **three** sentences. **Each** question carries **2** marks.

9. Propene and propyne show C-C multiple bond stretching in IR spectrum, while ethylene and ethyne do not show such bands. Why?

- 10. Explain how *cis*-stilbene is distinguished from *trans*-stilbene using UV spectra.
- 11. Comment on the aromatic nature of cyclooctatetraene on the basis of its NMR spectrum.
- 12. An organic compound having the molecular formula C_3H_7Cl exhibits the following signals in the 1H NMR spectrum : (i) δ 0.9 (3H, t); δ 1.6 (2H, m); δ 3.3 (2H, t). Suggest the probable structure.
- 13. Calculate the λ_{max} and ϵ_{max} for the following molecules using Woodward-Fieser rules.

- 14. Explain the term off-resonance decoupling.
- 15. What is nitrogen rule? Explain the rule taking the example of nitrobenzene.
- 16. Explain the principle of TOF analyser.
- 17. Phenetole in its mass spectrum exhibits an ion peak at $\frac{m}{z}$ 94. Explain its formation.
- 18. Name the following compounds based on Hantzsch-Widman system of nomenclature.


- 19. Pyrrole is more reactive at 2-position than 3-position in electrophilic substitution reactions. Explain.
- 20. Give any method of synthesis of oxirane.

 $(8 \times 2 = 16)$

SECTION - C

Short paragraph questions. Answer **any 4** questions. **Each** question carries **3** marks.

- 21. An organic molecule having molecular formula C_2H_5NO shows in its IR spectrum and absorption band at 1680 cm⁻¹. When reduced with LiAlH₄ it forms C_2H_7N whose IR spectrum lacks the peak at 1680 cm⁻¹, instead it exhibits a band at 3300 cm⁻¹. Suggest the probable structure.
- 22. a) An organic compound in hexane exhibits λ_{max} at 305 nm and in ethanol at 307 nm. What should be the nature of the transition and why?
 - b) Sketch the first order NMR spectrum of ethanol.
- 23. Explain Nuclear Overhauser Effect.
- 24. What is FAB? What are its advantages and disadvantages?
- 25. a) Explain Mclafferty rearrangement with an example.
 - b) Give a synthesis of the following:

26. How is pyrimidine ring constructed ? Give one method of synthesis of thymine. (4×3=12)

SECTION - D

Essay type questions. Answer 4 questions. Each question carries 6 marks.

27. a) The principal flavour constituent of cinnamon is a compound whose mass spectrum shows the molecular ion at m/z 132 (C_9H_8O), with the base peak at m/z 131, and a significant peak at m/z 103. IR spectrum : 1690 cm⁻¹ (s); UV spectrum : 284 (intense), 308 (weak) nm. ¹H NMR spectrum: δ 9.75 (1H, d, J = 8 Hz), 7.45 (1H, d, J = 16 Hz), 7.4 (5H, m) and 6.7 (1H, dd, J = 16, 8 Hz). Deduce the structure of the molecule and comment on its stereochemistry with respect to the NMR spectrum.

OR

- b) Discuss the various factors affecting the positions frequencies of absorption in the IR spectrum.
- 28. a) An organic compound having the molecular formula $C_9H_{10}O_2$, gave the following spectral data :

UV : λ_{max} 274 nm (ϵ = 2050)

IR: v 3031, 2941, 1724, 1608, 1504, 1060 and 830 cm⁻¹

¹H NMR δ : 2.35 (3H, s); 3.82 (3H, s) and 7.20 –7.85 (4H, m)

MS (m/z): 150, 145, 119.

What is the probable structure of the compound?

OR

- b) Discuss the terms:
 - i) Lanthanide shift reagents and
 - ii) CIDNP.
- 29. a) Write short notes on:
 - i) MALDI and
- ii) EI.

OR

- b) What are the common methods for the simplification of complex spectra in NMR spectroscopy? Explain with suitable examples.
- 30. a) Explain the synthesis strategies for the synthesis of indole and benzofurans citing examples.

OR

b) Describe the methods of synthesis of selenophanes, tellurophanes and naphthyridines. (4×6=24)

Reg. No. :

Name :

III Semester B.Sc. Degree (C.B.C.S.S.-O.B.E.-Regular/Supplementary/ Improvement) Examination, November 2023 (2019 to 2022 Admissions)

COMPLEMENTARY ÈLECTIVE COURSE IN CHEMISTRY/POLYMER CHEMISTRY

3C03CHE/PCH(PS): Chemistry (For Physical Science)

Time: 3 Hours Max. Marks: 32

Instruction: Answer the question in **English** only.

SECTION - A

Very short answer type. **Each** carries **1** mark. Answer **all 5** questions. (5×1=5)

- 1. Arrange the following in the increasing order of energy-Radio waves, Microwaves, IR and Cosmic rays.
- 2. Define closed system.
- 3. Define isochoric system.
- 4. Write the molecular formula of a coordination compound of Cobalt with ligand as NH₃ and Cl⁻ and coordination number 6.
- 5. Expansion of GSC, LLC.

SECTION - B

Short answer type. Each carries 2 marks. Answer any 4 questions out of 6. (4×2=8)

- 6. Write and express the entropy criteria for irreversible process.
- 7. Express the criteria for spontaneous process.
- 8. What is a zero order reaction? Give one example.
- 9. Define isotopes and isobars with one example.
- 10. Define mass defect and binding energy.
- 11. Mention two applications of column chromatography.

SECTION - C

Short essay type. Each carries 3 marks. Answer any 3 questions out of 5. (3×3=9)

- 12. Explain stretching and bending modes of vibrations using a linear molecule.
- 13. ΔH and ΔS for the reaction : 2 NO(g) + O₂(g) \rightarrow 2NO₂(g) at 720 K are 120 kJ and –150 J/K respectively. Calculate the Gibbs energy change and predict whether the reaction is spontaneous or not at 720 K.
- 14. Explain Werner's coordination theory using the example [CoCl(NH₃)₅]Cl₂.
- 15. Differentiate between molecularity and order.
- 16. Compare one merit and demerit of column, planar and gas-liquid chromatography.

SECTION - D

Long essay type. Each carries 5 marks. Answer any 2 questions out of 4. (2×5=10)

- 17. a) Explain spin spin split in NMR using suitable examples.
 - b) Write a brief note on electronic spectra.
- 18. What is meant by the EAN rule ? Calculate and express which of the following compounds obey EAN rule [Ni(NH₃)₆²⁺], [Ni(CO)₄], [Fe(CN)₆]³⁻, [Fe(CN)₆]⁴⁻.
- 19. Derive integrated rate equation for first order reaction. Explain with suitable examples how activation energy and catalyst are related. (3+2)
- Define and express nuclear fission and fusion. Explain detection of isotopes using Aston's mass spectrograph. (2+3)