Payyanur College, Payyanur (Affiliated to Kannur University)

Programme Outcomes (POs)

MSc PROGRAMME (FOR SCIENCE)

PROGRAMME OUTCOMES (PO)

PO1. Advanced Knowledge & Skills:

Postgraduate courses aim to provide students with in-depth knowledge and advanced skills related to their chosen field. The best outcome would be to acquire a comprehensive understanding of the subject matter and develop specialized expertise.

PO2. Research & Analytical Abilities:

Research and Analytical Abilities: Postgraduate programs often emphasize research and analytical thinking. The ability to conduct independent research, analyse complex problems, and propose innovative solutions is highly valued.

PO3. Critical Thinking & Problem-Solving Skills:

Developing critical thinking skills is crucial for postgraduate students. Being able to evaluate information critically, identify patterns, and solve problems creatively are important outcomes of these programs.

PO4. Effective Communication Skills:

Strong communication skills, both written and verbal, are essential in various professional settings. Postgraduate programs should focus on enhancing communication abilities to effectively convey ideas, present research findings and engage in academic discussions.

PO5. Ethical & Professional Standards:

Graduates should uphold ethical and professional standards relevant to their field. Understanding and adhering to professional ethics and practices are important outcomes of postgraduate education.

PO6. Career Readiness:

Postgraduate programs should equip students with the necessary skills and knowledge to succeed in their chosen careers. This includes practical skills, industry-specific knowledge, and an understanding of the job market and its requirements.

PO7. Networking & Collaboration:

Building a professional network and collaborating with peers and experts in the field are valuable outcomes. These connections can lead to opportunities for research collaborations, internships and employment prospects.

PO8. Lifelong Learning:

Postgraduate education should instill a passion for lifelong learning. The ability to adapt to new developments in the field, pursue further education, and stay updated with emerging trends is a desirable outcome.

Programme Specific Outcomes (PSOs)

Name of the Programme: MSc PHYSICS

PROGRAMME SPECIFIC OUTCOMES (PSOs)

CORE COURSES

The core courses in the M.Sc. Physics Programme are carefully curated to ensure that students acquire a solid foundation in classical and modern physics. The specific objectives of core courses include:

PSO1.

Understanding fundamental concepts and principles in classical mechanics, electrodynamics, quantum mechanics, mathematical physics and statistical mechanics.

PSO2.

Developing proficiency in solving complex physics problems using mathematical techniques and numerical methods.

PSO3.

Gaining insights into cutting-edge research and recent advancements in various fields of physics.

ELECTIVE COURSES

The Programme offers elective courses that allow students to specialize in specific areas of interest within physics. The specific objectives of elective courses include:

PSO4.

Allowing students to explore advanced topics such as Astrophysics, Nonlinear Dynamics, Quantum Field Theory, Optics and photonics, plasma physics, Computational Physics, Microprocessors, Materials Sciences, Atmospheric physics and Electronic Instrumentation, among others.

PSO5.

Encouraging critical thinking and analytical skills in solving specialized physics problems.

PSO6.

Providing opportunities for students to develop expertise in their chosen fields and prepare them for further research or industry.

MULTIDISCIPLINARY OPEN ELECTIVE COURSES

These courses are designed to foster interdisciplinary thinking and encourage students to explore areas beyond physics. The specific objectives of multidisciplinary open elective courses include:

PSO7.

Promoting a broader perspective and understanding of how physics interfaces with other scientific and non-scientific disciplines.

PSO8.

Encouraging creativity and innovation through the application of physics concepts to realworld challenges in various domains.

PSO9.

Developing communication skills to effectively collaborate with professionals from different backgrounds.

INTERNSHIP/RESEARCH PROJECT:

The internship or project component of the Programme aims to provide students with handson experience in applying theoretical knowledge to practical situations. The specific objectives of internships/projects include:

PSO10.

Offering opportunities to work on real-world problems in academia, research institutions, or industry settings.

PSO11.

Enhancing problem-solving and research skills by conducting independent investigations. Cultivating teamwork, project management, and presentation skills.

INSTITUTIONAL/INDUSTRIAL VISITS

The institutional and industrial visits are crucial for exposing students to the actual working environment of research institutions and industries. The specific objectives of these visits include:

PSO12.

Providing insights into the application of physics principles in real-life scenarios.

PSO13.

Facilitating interaction with professionals and researchers to gain practical knowledge and career insights.

PSO14.

Fostering networking opportunities for potential future collaborations or job prospects.

EXPERIENTIAL LEARNING AND COMPUTATIONAL PHYSICS

By incorporating experiential learning and computational physics as integral parts of the practical and project components, the specific objectives are:

PSO15.

Enabling students to gain hands-on experience in conducting experiments and simulations to reinforce theoretical concepts.

PSO16.

Developing proficiency in using computational tools and numerical methods for modelling and analysing complex physical systems.

PSO17.

Enhancing problem-solving skills and fostering a research-oriented mindset.

Course Outcomes (COs)

Name of the Programme: MSc PHYSICS

Sl. No	Name of the Course	Outcomes
1.	MSPHY01C02- MATHEMATICAL PHYSICS I	 CO1: Deal with particle mechanics at an advanced level. CO2: Use the calculus of variations to characterize the function that extremizes a functional. CO3: Understand the concept of constraints, principle of least action and formulation of Lagrange's method and apply Lagrange's equation for simple dynamical systems. CO4: Understand Central force and its application in Kepler's problem. CO5: Formulate and solve problems in classical mechanics using the Lagrangian, Hamiltonian and Hamilton-Jacobi formulations. CO6: Apply the methods of classical mechanics to identify conserved quantities and normal modes. CO7: Analyze motion of rigid bodies in non-inertial frames of metarona suing Euler and Euler's enders.
		trames of reference using Euler angles and Euler's equations.
2.	MSPHY01C02- MATHEMATICAL PHYSICS I	CO1: Provide a solid foundation in linear algebra: This includes a thorough understanding of vectors, matrices, linear transformations, eigenvalues, eigenvectors, and the concept of diagonalization. Students will also learn the basics of tensor analysis. CO2: Understand infinite series and Fourier transforms: Students will be exposed to the concepts of infinite and power series, along with their convergence properties. Furthermore, they will learn about the Fourier series and Fourier transforms, including their properties and applications in physics. CO3: Master special functions and orthogonal polynomials: The course aims to impart knowledge about special functions like Gamma and Beta functions, Legendre and Bessel functions, and the concept of orthogonal polynomials such as Hermite and Laguerre polynomials. Students will learn how these functions and polynomials are used to solve problems in physics.

COURSE OUTCOMES (COs)

		CO4: Develop expertise in ordinary and partial differential equations (ODEs and PDEs): Students will learn how to solve ODEs and PDEs, with a specific focus on systems of ODEs, the Laplace equation, and the wave equation. They will also gain an understanding of their applications in physics. CO5: Apply mathematical methods to physical problems and promote computational skills: The course aims to develop students' ability to use these mathematical methods to analyse and solve problems in physics. The tutorial sessions will particularly focus on practical applications, enhancing problem- solving skills. As part of the course, students will use computational tools to solve complex problems, enhancing their computational physics skills.
3.	MSPHY01C03 - ELECTRODYNAMICS	 CO1: Understand the fundamental principles and concepts of classical electrodynamics. CO2. Analyze and interpret electromagnetic fields, potentials, Maxwell's equations and their implications. CO3. Describe the behaviour of electromagnetic waves in different media. CO4. Understand the interaction of electromagnetic waves with matter, including reflection and transmission phenomena. CO5. Understand the principles of electromagnetic radiation and waveguides. CO6. Apply the principles of electrodynamics in the context of special relativity. CO7. Enhance problem-solving and critical-thinking skills through tutorials and exercises CO8. Acquire a solid foundation in electromagnetism, laying the groundwork for further research or specialization in related fields.
4.	MSPHY01C04- ELECTRONICS	 CO1. Explain the theory, working and applications of OPAMP (Module 1) CO2.Understand the applications of the OPAMP with special reference to filters, oscillators etc (Module 2) CO3. Appreciate combinational circuits, Sequential circuits, D/A & A/D converters (Module 3) CO4. Apprehend the architecture of the 8085 Microprocessor. (Module 4)

5.	MSPHY01C05 & MSPHY02C05 - PRACTICAL I - BASIC PHYSICS LABORATORY	 CO1. Develop proficiency in setting up and conducting physics experiments using various scientific instruments. CO2. Understand the principles of instrumentation and calibration processes to ensure accurate measurements. CO3. Develop the ability to troubleshoot experimental setups and address technical issues. CO4. Develop skills in collecting and analysing experimental data, including the use of statistical tools and software for data processing. CO5. Improve scientific writing skills to present experimental results in a clear and concise manner. CO6. Encourage critical analysis of experimental results and drawing valid conclusions.
6.	MSPHY01C06 & MSPHY02C06- PRACTICAL II - ELECTRONICS LABORATORY	 CO1. Develop hands-on skills in using electronic equipments, tools and instruments commonly used in the electronics industry like oscilloscopes, signal generators, multimeters, soldering irons etc. CO2. Gain proficiency in designing, building, and analysing electronic circuits, both analog and digital to perform specific functions like amplification, voltage regulation, signal generation, mathematical operations and digital operations using BJT/FET/ICS. CO3. Learn how to identify and diagnose problems in electronic circuits and systems and develop effective strategies to debug and fix issues. CO4. Improve scientific writing skills to present experimental results in a clear and concise manner. CO5. Encourage critical analysis of experimental results and drawing valid conclusions. CO6. Understand the importance of safety protocols when working with electronic components and systems.
7.	MSPHY02C08- QUANTUM MECHANICS-I	 CO1. Understand the Time-Independent Schrödinger Equation and its applications CO2. Apply mathematical tools in Quantum Mechanics CO3. Analyze the Theory of Angular Momentum CO4. Recognize symmetries and conservation laws in quantum systems

8.	MSPHY02C09- STATISTICAL MECHANICS	 CO1: Understand how a probabilistic description of nature at the microscopic level gives rise to deterministic laws at the macroscopic level. CO2: Relate the concepts of entropy and temperature as defined in statistical mechanics to their more familiar versions in thermodynamics. CO3: Solve for the thermal properties of classical and quantum gases and other condensed systems from a knowledge of their microscopic Hamiltonians. CO4: Appreciate that interactions between particles can explain the various phases of matter observed in nature as in phase transitions.
9.	MSPHY02C10- MATHEMATICAL PHYSICS II	 CO1: Develop a foundational understanding of complex numbers and functions: including properties, analytical methods, and complex integration. Students should be able to apply these concepts to the study of physics, such as electrodynamics and quantum mechanics. CO2: Laplace Transforms and Group Theory: Learn to use Laplace transforms in physics problems. Additionally, gain a thorough understanding of the principles of group theory, including groups, subgroups, and group representations. Students should be able to identify and work with special groups such as unitary, orthogonal, and homogeneous Lorentz groups. CO3: Numeric Analysis: Equip students with the skills to conduct numerical analysis, such as error propagation, numerical integration and differentiation, and numerical methods for linear algebra. Students should be able to apply these techniques to solve ordinary and partial differential equations. CO4: Probability and Statistics: Provide students with a solid understanding of data analysis and probability theory, including random variables, probability distributions, and statistical methods to physical problems and promote computational skills: The course aims to develop students' ability to use these mathematical methods to analyze and solve problems in physics. The tutorial sessions will particularly focus on practical applications, enhancing problem-solving

		skills. As part of the course, students will use
		computational tools to solve complex problems
		enhancing their computational physics skills
		emanenig then computational physics skins.
10.	MSPHY02C11:	CO1: Understand structure of atom from the atomic
	SPECTROSCOPY	spectra
		CO2: Understand vector atom model through space
		quantization
		CO3: Understand the influence of external magnetic
		and electric field on the atomic system
		CO4: Understand the microwave and infrared
		spectroscopy techniques of the molecular system
		CO5. Understand the electronic and Ramon
		cos: Understand the electronic and Kaman
		Specific construction of the molecular system
		CO6: Understand nuclear magnetic resonance (INMR)
		and electron spin resonance (ESR) spectroscopy
		techniques
		C07: Understand Mossbauer spectroscopy and its
		applications
11	MSPHY03C13	CO1 Demonstrate a thorough understanding of
11.	OUANTUM	various approximation methods
	MECHANICS II	CO2 Understand the time dependent perturbation
		theory and its applications
		CO3 Analyse and interpret the theory of scattering
		CO4 Develop familiarity with relativistic quantum
		mechanics and then the importance of
		the theory of field quantization
12	MSPHV03C14	CO1 Describe the basic properties of the nuclear
12.	CONDENSED	force
	MATTER PHYSICS	CO2 Explain the nucleon-nucleon scattering and its
		underlying principles
		CO3 Review the different nuclear models and nuclear
		reactions
		CO4 Discuss nuclear fission and its applications
		CO5 Describe different nuclear decays and explains
		the decay processes with theory
		CO6 Review the conservation laws governing
		interactions involving elementary particles
		and discuss its internal structure
13	MSPHV03C16	CO1 Acquire skills in setting up and conducting
1.5.	PRACTICAL III	nhysics experiments using various
		advanced scientific instruments
		CO2 Understand the principles of instrumentation and
		colibration processes to ensure
		canoration processes to ensure

		accurate measurements.
		CO3. Gain proficiency in designing, building and
		analysing advanced electronic circuits.
		CO4. Develop skills in collecting and analysing
		experimental data.
		CO5. Improve scientific writing skills to present
		experimental results in a clear and concise
		manner.
		CO6. Encourage critical analysis of experimental
		results and drawing valid conclusions.
	EI	ECTIVE COURSES
14.	MSPHY03O01	CO1: Understand different types of quantities and
	RADIATION PHYSICS	units for measurement of radiation
		CO2: Understand various interaction mechanisms of
		radiation with matter
		CO3: Understand radiation detection and
		measurement techniques and develop
		knowledge on different types of devices used.
		CO4: Understand the principles of radiation
		protection
15	MCDUVA/FA1.	CO1: Understand the different types of store and their
15.	ASTROPHYSICS	con: Understand the different types of stars and then
	ASTROTITISIES	classification based on spectral characteristics and
		$\frac{1}{1000} = \frac{1}{1000} + \frac{1}{1000} + \frac{1}{10000} + \frac{1}{10000000000000000000000000000000000$
		CO2: Explore the life cycles of stars, from their
		formation in nebulae to their eventual evolution into
		white dwarfs, neutron stars, or black holes.
		CO3: Investigate the properties and dynamics of
		galaxies, including their morphology, distribution, and
		the role of dark matter.
		CO4: Examine the expansion of the universe and the
		evidence for cosmic evolution, including redshift and
		cosmic microwave background radiation.
		CO5: Introduce the basic principles of general
		relativity and their application to cosmology, including
		the Friedmann equations and the metric of the universe.
16.	MSPHY04E02: NON-	CO1: Introduce basic concepts and definitions in
	LINEAR DYNAMICS	nonlinear dynamics.
		CO2: Develop skills in analytical methods such as
		fixed points, stability analysis, and bifurcation theory.
		CO3: Apply numerical techniques for solving and
		analyzing nonlinear differential equations.
		CO4: Examine applications of nonlinear dynamics in
		various fields such as physics, biology, ecology, and
		engineering
1		<i>000</i> -

		CO5: Analyze real-world systems exhibiting nonlinear
		behavior.
17.	MSPHY04E03: QUANTUM FIELD THEORY	 behavior. CO1: To understand the quantization of fields and the significance of field operators. CO2: To explore the concept of symmetries and conservation laws in field theory. CO3: Derive the Feynman rules from a given Lagrangian and calculate cross sections and decay rates. CO4: Introduces the relativistic effects in quantum mechanics and learns to deal large degrees of freedom. CO5: To study the interactions of scalar, fermionic and gauge fields.
		CO6: Understand Quantum Field Theory applications in various branches of physics.
18.	MSPHY04E04: OPTICS AND PHOTONICS	 CO1: Understand the fundamental principles and concepts of optics and photonics. CO2: Describe the fundamental principles of laser operation, including population inversion, stimulated emission, and optical feedback. CO3: Understand the principles of nonlinear optics and the interaction of intense light with matter. CO4: Explain phenomena such as second-harmonic generation, self-focusing, and third harmonic generation CO5: Understand the principles of light propagation in optical fibers, including modes, dispersion, and attenuation. CO6: Analyze the design and functioning of various types of optical fibers, including single mode and multi-mode fibers. CO7: Understand the fundamental concepts of quantum optics.
19.	MSPHY04E05: PLASMA PHYSICS	 CO1: Define plasma and explain its unique properties and applications. CO2: Gain proficiency in the fundamental equations governing plasma behavior. CO3: Identify and analyze different types of waves in plasmas. CO4: Understand the mechanisms behind various plasma instabilities. CO5: Understand the concept of Landau Damping.

20.	MSPHY04E06:	CO1: Understand and apply various numerical
	COMPUTATIONAL	methods and algorithms for solving complex physical
	PHYSICS	nrohlems
		CO2: Develop and implement computational
		CO2: Develop and implement computational
		programs using programming languages such as
		Python or C++ to solve physics problems.
		CO3: Analyze and interpret computational results,
		including data visualization and error analysis.
		CO4: Utilize advanced computational techniques, such
		as Monte Carlo methods, molecular dynamics
		simulations, and finite element methods, in solving
		problems in specific areas of physics.
		CO5: Develop computational skills and problem-
		solving abilities to tackle interdisciplinary research
		problems at the intersection of physics mathematics
		and computer science
21	MCDIIVA/EA7.	and computer science.
21.	MICPOPPOCESSOPS	COI: Describe the architecture and instruction set of
	AND DIGITAL	the intel 8085 microprocessor and perform basic
	SIGNAL	operations using assembly language.
	PROCESSING	CO2: Apply the principles of microprocessor timings
		to create efficient assembly programs and understand
		the machine cycles and timing diagrams.
		CO3: Interface memory and I/O devices with the 8085
		microprocessor and utilize address decoding
		techniques for system design.
		CO4: Design and develop applications using
		microcontrollers, particularly the 8051, and understand
		their internal architecture and stack operations.
		CO5: Analyze discrete-time signals and systems using
		Z Transform, DTFT, and DFT, and design FIR and IIR
		filters for digital signal processing applications.
22	MSPHV04F08·	CO1: Classify and Describe Material Types: Clearly
22.	MATERIALS	classify materials and describe their atomic structures
	SCIENCE	bonding types and crystalline arrangements
		Understand and explain the significance of
		important and explain the significance of
		imperfections in solids and their impact on material
		properties
		CO2: Evaluate Mechanical Behaviour: Analyse and
		interpret stress-strain behaviour of materials. Evaluate
		the factors influencing elasticity, plasticity, hardness,
		toughness, and ductility. Understand the mechanisms
		of dislocation motion, strengthening, recovery,
		recrystallization, and grain growth.
		CO3: Interpret Phase Diagrams: Utilize phase
		diagrams to determine phase equilibria and predict

		microstructure development Apply concepts such as the lever rule, solubility limits, and phase transformations to real-world material engineering problems. Understand the kinetics of nucleation and growth and their role in phase transformations. CO4: Analyse Advanced Material Applications: Explain the structure and properties of ceramics, polymers, and composites. Identify and analyse the applications and importance of smart materials and nanotechnology. Assess the environmental and societal implications of material choices, emphasizing sustainable and green engineering practices.
23	MSPHY04E09:	CO1: This course will help the students to gain a basic
	ATMOSPHERIC	understanding of the Earth's
	PHYSICS	atmosphere its composition structure and variation
		CO2: Understand the role of radiation in heating and
		cooling the atmosphere
		CO3: Understand the properties of clouds and corosols
		and their impact on alimate
		and then impact on chinate.
		CO5 . Learning almospheric waves and instabilities.
		COS: Learn about atmospheric radiation, atmospheric
		thermodynamics and
		atmospheric instability and convection
24.	MSPHY04E10:	CO1. Explain the Basic Concepts of Measurement and
	ELECI KONIC INSTRUMENTATION	Transducers.
		CO2. Understand different types of electronic test
		equipment.
		CO3. Appreciate the working of thyristor and its
		application.
		CO4. Apprehend the block diagrams of biomedical
		instrumentation devices.
25.	MSPHY04C19:	CO1: To address research questions or test hypotheses,
	RESEARCH	quantitative or qualitative data must be gathered,
	MIE I HODOLOG Y	analyzed, and interpreted using a systematic, scientific
	WRITING	procedure known as research methodology.
		CO2: A research technique helps researchers stay on
		track by restricting the scope of the study, much like a
		plan for carrying out research.
		CO3: On completing the course, a student will be able
		to appreciate the scientific research methodology.
		CO4: To develop the capability of the students to find
		research problems, to conduct research and to report
		the findings in an ethical manner, provide an
1		introduction to technical multipa complex menhics

	and computer presentations with LaTeX are the main
	concerns of the course.