||8|01 (||Ut|101 LH|101||Xt]10||"J|10||

K20U 0127

Reg. No. :

Name :

VI Semester B.Sc. Degree (CBCSS-Reg./Supple./Improv.) Examination, April 2020 (2014 Admission Onwards) CORE COURSE IN MATHEMATICS 6B10MAT : Linear Algebra

Time : 3 Hours

Max. Marks: 48

SECTION - A

All the first 4 questions are compulsory. They carry 1 mark each.

- Give an example to show that if f and g are two quadratic polynomials then the polynomial f + g need not be quadratic.
- Obtain a basis for M₂₂ (R).
- 3. Let V = P₂ (R) and let β = {1, x, x²} be the standard ordered basis for V. If $f(x) = 3x^2 + 2x + 1$ then [f]_p is
- Give the nature of characteristic roots of
 - i) a Hermitian matrix and
 - ii) a Unitary matrix.

SECTION - B

Answer any 8 questions from among the questions 5 to 14. These questions carry 2 marks each.

- 5. Find the equation of the line through the points P (2, 0, 1) and Q (4, 5, 3).
- 6. What is the possible difference between a generating set and a basis ?
- 7. Is the union of two subspaces W, and W₂ of a vectorspace V again a subspace of V ? Justify with an example.

- 8. Let V be a vectorspace and $\beta = \{x_1, x_2, ..., x_n\}$ be a subset of V. Show that β is basis if each vector y In V can be uniquely expressed as a linear combination of vectors in β .
- 9. Show that T : $\mathbb{R}^2 \to \mathbb{R}^2$ defined by T $(\mathbf{a}_1, \mathbf{a}_2) = (2\mathbf{a}_1 + \mathbf{a}_2, \mathbf{a}_1)$ is a linear transformation.
- Let T : V -> W be a linear transformation. Prove that N (T), the nullspace of T, is a subspace of V.
- 11. Find a basis of the row space of the matrix

:	1	1	1]	
	3	4	5	
	2	3	4	

12. Find the characteristic values of the matrix

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 2 & 2 \\ -1 & 1 & 3 \end{bmatrix}$$

13. Use Gauss elimination to solve the system of equations :

10x + y + z = 122x + 10y + z = 13x + y + 3z = 5.

14. Use Gauss, Jordan elimination to solve the system of equations :

$$10x + y + z = 12$$

 $2x + 10y + z = 13$
 $x + y + 3z = 5$

SECTION - C

Answer any 4 questions from among the questions 15 to 20. These questions carry 4 marks each.

15. In every vectorspace V over a field F prove that

- i) $a0 = 0 \forall a \in F$, where 0 is the zero vector and
- ii) $(-a)x = -(ax) \forall a \in F \text{ and } \forall x \in V.$
- 16. Define linear dependence and linear independence of vectors with examples.
- 17. Define a linear transformation from a vectorspace V into W. Verify that $T: M_{ntxn} \to M_{nxm}$ by T (A) = Aⁱ where Aⁱ is the transpose of A, is linear.
- 18. Show that the row nullity and column nullity of a square matrix are equal.
- 19. Find the characteristic values and the corresponding characteristic vectors of the matrix.
 - 2 1 0 0 2 1 0 0 2

20. Use the Gaussian elimination method to find the inverse of the matrix.

 $\begin{bmatrix} 2 & 1 & 1 \\ 3 & 2 & 3 \\ 1 & 4 & 9 \end{bmatrix}$

SECTION - D

Answer any 2 questions from among the questions 21 to 24. These questions carry 6 marks each.

If a vectorspace V is generated by a finite set S₀, then show that a subset of S₀ is a basis for V and V has a finite basis.

-3-

K20U 0127

- 22. State and prove dimension theorem. Deduce that a linear transformation $T: V \rightarrow V$ is one to one if and only if T is onto.
- 23. Show that the matrix

$$A = \begin{bmatrix} 0 & 0 & 1 \\ 3 & 1 & 0 \\ -2 & 1 & 4 \end{bmatrix}$$

satisfies Cayley Hamilton theorem and hence obtain A⁻¹.

24. Prove that

$$A = \begin{bmatrix} 4 & 0 & 1 \\ 2 & 3 & 2 \\ 1 & 0 & 4 \end{bmatrix}$$

is diagonalizable and find the diagonal form.

K20U 0128

Reg. N	lo.	÷	
Name		••••	

VI Semester B.Sc. Degree (CBCSS-Reg./Supple./Improv.) Examination, April 2020 (2014 Admission Onwards) CORE COURSE IN MATHEMATICS 6B11MAT : Numerical Methods and Partial Differentia) Equations

Time : 3 Hours

Max. Marks : 48

SECTION - A

All the 4 questions are compulsory. They carry 1 mark each.

1. State the intermediate value theorem for finding the real root of an equation.

- 2. Complete the expression A = E -
- 3. Give the maximum bound for error R₁(f) in trapezoidal rule.
- 4. For a function u(r,θ, t), give its Laplacian in Polar co-ordinates.

SECTION - B

Answer any 8 questions from among the questions 5 to 14. These questions carry 2 marks each.

Find √15 by Bisection method, correct to two decimal places.

- Find a root of the equation log x cos x = 0, where x is in radians, correct to two decimal places, using Regula Falsi method.
- 7. Show that $A\left(\frac{f_i}{g_i}\right) = \frac{g \Delta f f \Delta g}{g g_{i+1}}$.

K20U 0128

 Find log₂ (2.7) from the following table using Lagranges interpolation formula.

x	2	2.5	3
log_(x)	0,6932	0.9163	1.0986

- 9. Evaluate $\sqrt{\frac{2}{\pi}} \int_{0}^{12} e^{-\pi/2} dx$, using Simpson's 1/3 rule, taking h = 0.25.
- 10. Evaluate $\int_{1}^{1} \frac{dx}{1+x}$ using Trapezoidal rule with h = 0.25.
- Find a solution to the initial value problem y' = 2y x, y(0) = 1, by performing two iterations of the Picard's method.
- Find y(1.2), given the differential equation y' = 2xy², with the condition y(1) = 1, using Taylor's series with step size h = 0.1.
- 13. Give the Fourier series solution of the one dimensional wave equation, with fixed ends and initial conditions u(x, 0) = f(x) and $\frac{\partial u}{\partial t} \Big|_{t=0}$, g(x).
- 14. Solve the equation $u_{yy} = 0$ where u is a function of x and y.

SECTION - C

Answer any 4 questions from among the questions 15 to 20. These questions carry 4 marks each.

- Find a real root of the equation x³ + x² 1 = 0 by General iteration method, correct to two decimal places.
- Using Newtons divided difference formula, find a cubic polynomial for the following data. Hence find f(3).

x	0	1	2	4
f(x)	1	1	2	5

17. The function f(x) represented by the following data has a minimum in the interval (0.5, 0.8). Find this point of minimum and the minimum value.

x	0.5	0.6	0.7	0.8
f(x)	1.3254	1.1532	0.9432	1.0514

I MARKING MULAN JAR ANA TAU JARAH TAU

-3-

K20U 0128

- 18. Find the approximate value of y(0,1) given that $y' = x^2 + y^2$, y(0) = 1 using three iterations of the Modified Euler's method with h = 0.1.
- 19. Given $\frac{dy}{dx} = y x$ with y(0) = 2, use Runge Kutta method of order two to find y(0.2) taking h = 0.1.
- 20. A stretched string of length / and fixed end points has initial displacement $y = a \sin \frac{\pi x}{l}$ from which it is released at time t = 0. Find the vertical displacement

y(x, t) at any distance x from one end at time t.

SECTION - D

Answer any 2 questions from among the questions 21 to 24. These questions carry 6 marks each.

- 21. Find an interval of unit length which contains the smallest positive root of the equation $e^4 2x^2 = 0$. Hence find the root of this equation using Newton Raphson method correct to three decimal places.
- 22. The following table gives the value of e * for some values of x :

x	0.2	0.3	0.4	0.5	0.6	0.7	0.8
e-x	0.8187	0.7408	0.6703	0.6065	0.5488	0.4966	0.4493

Determine the value of e 4.55 using Stirling's central difference formula.

Compute f'(0.2) and f''(0) from the following table.

x	0.0	0.2	0.4	0.6	0.8	1.0
f(x)	1.00	1.16	3.56	13.96	41.96	

24. Find the temperature u(x, t) in a slab of length L whose ends are kept at zero temperature and whose initial temperature f(x) is given by

$$f(x) = \begin{cases} k, & \text{when } 0 < x < \frac{L}{2} \\ 0, & \text{when } \frac{L}{2} < x < L \end{cases}$$

I BINNE DE BERGER IN DE BE

K20U 0129

Reg. N	lo. :	
Name	:	

VI Semester B.Sc. Degree (CBCSS – Reg./Supple./Improv.) Examination, April 2020 (2014 Admission Onwards) CORE COURSE IN MATHEMATICS 6B12MAT : Complex Analysis

Time : 3 Hours

Max. Marks: 48

SECTION - A

All the first 4 questions are compulsory. They carry 1 mark each.

- Sketch the region {z : Re (iz) ≥ 0}.
- 2. Define Harmonic function.
- Find the Radius of convergence of ∑ 7"z".
- 4. Find the residue of $f(z) = e^z$ at z = 0.

SECTION - B

Answer any 8 questions from among the questions 5 to 14. These questions carry 2 marks each.

- 5. Give an example of a function which is differentiable exactly at one point and give its justification.
- 6. Verify Cauchy-Riemann equations for the function $f(z) = z^2$.
- 7. Evaluate $\int |z| dz$, where C is the line segment from origin to 1 + I.
- 8. Find the Radius of convergence of $\sum (1 + i)^n (z 3i)^n$.
- 9. Find the residue of $f(z) = \frac{9z + i}{z(z^2 + 1)}$ at z = i.

K20U 0129

- 10. Find the Laurent's series expansion of $f(z) = \frac{1}{z^5} \sin z$ with center 0.
- 11. State Taylors Theorem. Find the Taylors series expansion of $f(z) = \frac{1}{1+z^2}$ centered at z = 0.

-2-

- Give an example of a series which is convergent but not absolutely. Give justification.
- State Laplace's Equation. Give an example of a real valued function which satisfy Laplace's Equation on the complex plane.
- 14. State Cauchy's inequality.

SECTION - C

Answer **any 4** questions from among the questions **15** to **20**. These questions carry **4** marks **each**.

- 15. Prove that an analytic function of constant absolute value is constant in a domain.
- 16. Evaluate the following :

a)
$$\int_{0}^{1-i} z^2 dz$$

b)
$$\int_{0}^{0-3\pi i} e^2 dz$$

- 17. The power series $\sum a_n z^n$ converge at z = 1 and diverge at z = -1. Find the radius of convergence of $\sum a_n z^n$.
- 18. State and prove Residue Theorem.
- 19. Find an analytic function f(z) = u(x, y) + iv(x, y), where u(x, y) = xy.
- State and prove the theorem of convergence of power series.

MUT NO UTAMAN MAN

SECTION - D

Answer any 2 questions from among the questions 21 to 24. These questions carry 6 marks each.

- State and prove Cauchy Riemann equations.
- 22. a) Define singular point, isolated singular point, removable singular point, pole and essential singular point.
 - b) Give an example of a non-isolated singular point.
- 23. a) State and prove Cauchy's integral formula.
 - b) Evaluate $\int_{C} \frac{e^2}{z-2} dz$, where C is the circle |z| = 3.
- 24. Give examples and justifications of power series having Radius of convergence 1 and
 - a) Which diverge at every point on the circle of convergence ?
 - b) Which doesn't diverge at every point on the circle of convergence ?

K20U 0130

Max. Marks : 48

Reg. No) . :	
Name :		

VI Semester B.Sc. Degree (CBCSS-Reg/Supple/Improv.) Examination, April 2020 (2014 Admission Onwards) Core Course in Mathematics 6B13MAT : MATHEMATICAL ANALYSIS AND TOPOLOGY

Time : 3 Hours

SECTION - A

All the first 4 questions are compulsory. They carry 1 mark each.

- **1.** If I = [0, 4], calculate the norm of the partition $P = \{0, 1, 1.5, 2, 3.4, 4\}$.
- 2. Evaluate lim (f_p(x)) where $f_p(x) = \frac{x}{x-p}$ for all $x \ge 0$, $n \in \mathbb{N}$.
- 3. Fill in the blanks : The closure of set of all irrational numbers is _
- Write a pair of topologies T₁ and T₂ on X = {a, b, c} so that T₁∪T₂ is not a topology on X.

Answer any 8 questions from among the questions 5 to 14. These questions carry 2 marks each.

- 5. Show that every constant real valued function on [a, b] is in R [a, b].
- 6. State squeeze theorem for Riemann integrability.
- 7. Find the value of $\int_{-\infty}^{\infty} \operatorname{sgn}(x) dx$.
- 8. Prove that the sequence of functions, $f_r(x) = \frac{x}{n}$, $n \in \mathbb{N}$ converges uniformly on [0, 1].
- 9. State the Bounded Convergence Theorem.
- Define a metric space and write an example.
- Prove that in a metric space each open sphere is an open set.
- Give an example of a pair of subsets A and B of the real line with usual topology such that Int (A) ∪ Int(B) ≠ Int (A ∪ B).
- 13. Define subspace of a topological space and show that it is a topological space.
- 14. Is the real line \mathbb{R} with the usual topology separable ? Justify.

K20U 0130

SECTION - C

Answer any 4 questions from among the questions 15 to 20. These questions carry 4 marks each.

- 15. Prove that if $f: [a, b] \to \mathbb{P}$ is continuous on [a, b], then $f \in \mathcal{R}[a, b]$.
- 16. State and prove composition theorem in Riemann integrals. Deduce that if $f \in \mathcal{R}[a, b]$, then $|f| \in \mathcal{R}[a, b]$ and $\int_{-\infty}^{0} f \leq \int_{-\infty}^{0} f$.
- 17. Prove that a power series $\sum a_n x^n$ is absolutely convergent if |x| < R and is divergent if |x| > R. (Here R is the radius of convergence and assume that $0 < R < \infty$).
- Show that a subset F of a metric space is closed if and only if its complement. F' is open.
- Prove that a subspace Y of a complete metric space X is complete if and only if it is closed.
- Prove that in a topological space A = A∪D(A) and A is closed if and only if A _, D (A).

SECTION - D

Answer any 2 questions from among the questions 21 to 24. These questions carry 6 marks each.

- State and prove the Cauchy criterion for Riemann integrability.
- 22. Prove that if (\mathbf{f}_n) is a sequence of functions in $\mathscr{X}[\mathbf{a}, \mathbf{b}]$ and (\mathbf{f}_n) converges uniformly on $[\mathbf{a}, \mathbf{b}]$ to \mathbf{f} , then $\mathbf{f} \in \mathscr{X}[\mathbf{a}, \mathbf{b}]$ and $\int_{0}^{\mathbf{b}} \mathbf{f} = \lim_{n \to \infty} \int_{0}^{\mathbf{b}} \mathbf{f}$.
- 23. Show that in a complete metric space X, if $\{F_i\}$ is a decreasing sequence of non-empty closed subsets of X such that $d(F_r) \rightarrow 0$, then $\bigcap_{i=1}^{n} F_n$ contains exactly one point. Give an example to show that the condition $d(F_n) \rightarrow 0$ can not be dropped to obtain the result.
- Show that a subset of a topological space is dense if and only if it intersects every non-empty open set.

K19U 0122

Reg. N	0. :	•
Name		é

VI Semester B.Sc. Degree (CBCSS-Reg/Supple/Improv.) Examination, April 2019 (2014 Admission Onwards) CORE COURSE IN MATHEMATICS 6B10 MAT : Linear Algebra

Time : 3 Hours

SECTION - A

Max. Marks : 48

All the first 4 questions are compulsory. They carry 1 mark each.

- Give an example of a proper non trivial subspace of P(R), the vectorspace of all polynomials with real coefficients.
- A subset of a linearly dependent set can possibly be linearly independent. Justify by giving an example.
- 3. The null space of the operator T : $R^2 \mapsto R^2$ given by T(a₁, a₂) = (a₁, 0) is
- 4. The number of linearly independent solutions of the equation x + y + z = 0 is

SECTION - B

Answer any 8 questions from among the questions 5 to 14. These questions carry 2 marks each.

- In any vectorspace V show that (a + b) (x + y) = ax + bx + ay + by for all scalars a and b and all vectors x and y.
- Let V = R² = R × R where vector addition and scalar multiplication are defined by; (x₁, x₂) + (y₁, y₂) = (x₁ + y₁, x₂ + y₂) and r(x₁, x₂) = (rx₁, x₂). Is V a vectorspace over R ? Justify.
- Show that any intersection of subspaces of a vectorspace V is again a subspace of V.
- Let T : V → W be a linear transformation. Prove that N(T), the nullspace of T, is a subspace of V.
- Let T : V → W be an invertible linear transformation. Use dimension theorem to observe that dimV = dimW.
 P.T.O.

- Let V = C[a,b] be the vectorspace of all continuous real valued functions defined over the closed bounded interval [a, b]. Describe the fundamental theorem of calculus interms of linear transformations on V.
- Find the values of λ for which the following system of equations have non zero solutions.

 $\lambda x + 8y = 0$ $2x + \lambda y = 0$

- Verify that the set of all characteristic vectors of a square matrix associated with a fixed characteristic value λ is a subspace of the respective Eucledian space.
- Use Gauss elimination to solve the system of equations :

2x + y + z = 103x + 2y + 3z = 18x + 4y + 9z = 16

14. Use Gauss Jordan elimination to solve the system of equations :

2x + y + z = 103x + 2y + 3z = 18x + 4y + 9z = 16

SECTION - C

Answer any 4 questions from among the questions 15 to 20. These questions carry 4 marks each.

- Define vectorspace and show that in every vector space (-1) x is the additive inverse of x.
- 16. Define a basis of a vectorspace. Give an example of a basis of M_{2×2}(R).
- Let V and W be vectorspaces and let T : V → W be linear. Then prove that T is one to one if and only if N(T) = {0}.
- Suppose that AX = B has a solution. Show that this solution is unique if and only if AX = 0 has only the trivial solution.

-3-

K19U 0122

 Test the following system of equations for consistency and solve it if it is consistent.

x + 2y + 3z = 143x + y + 2z = 112x + 3y + z = 11

 Find the largest characteristic value and a corresponding characteristic vector of the matrix.

1 -3 3 3 -5 3 6 -6 4

SECTION - D

Answer any 2 questions from among the questions 21 to 24. These questions carry 6 marks each.

- 21. If S is a nonempty subset of a vectorspace V, then show that span (S) is a subspace of V and is the smallest subspace of V containing S. Under what further condition S can become a basis of V ?
- 22. Let V and W be vectorspaces over a common field F and suppose that V has a basis {x₁, x₂, ..., x_n}. Prove that for any fixed vectors y₁, y₂, ..., y_n in W there exists exactly one linear transformation T : V → W such that T(x_i) = y_i for i = 1 ..., n.
- 23. Show that the matrix

$$A = \begin{bmatrix} 0 & 0 & 1 \\ 3 & 1 & 0 \\ -2 & 1 & 4 \end{bmatrix}$$

satisfies Cayley Hamilton theorem and hence obtain A⁻¹.

24. Prove that

 $A = \begin{bmatrix} 0 & -2 & -3 \\ 1 & 3 & 3 \\ 0 & 0 & 1 \end{bmatrix}$

is diagonalizable and find the diagonal form.

K19U 0123

Reg. No. :

Name :

VI Semester B.Sc. Degree (CBCSS – Reg./Supple./Improv.) Examination, April 2019 (2014 Admission Onwards) CORE COURSE IN MATHEMATICS 6B11MAT – Numerical Methods and Partial Differential Equations

Time : 3 Hours

Max. Marks: 48

SECTION - A

All the 4 questions are compulsory. They carry 1 mark each.

Give the condition for convergence in the General Iteration method.

Complete the expression ∇ = - E⁻¹.

State Simpson's 1/3 rule of integration.

Give the (n + 1)th approximation step in Picard's method.

SECTION - B

Answer any 8 questions from among the questions 5 to 14. These questions carry 2 marks each.

5. Find an interval which contains the root of the equation $2x^3 - x^2 + x - 6 = 0$.

- Find a root of the equation log x cos x = 0, where x is in radians, correct to two decimal places, using Regula Falsi Method.
- Using Lagrange's interpolation formula find the approximate value of sin(π/6.).

x	0	$\pi/4$	π/2
$y = \sin x$	0	0.7071	1

P.T.O.

- 8. Show that $\Delta\left(\frac{t_i}{g_i}\right) = -\frac{g_i\Delta t_i t_i\Delta g_i}{g_ig_i + 1}$.
- 9. Find the approximate value of $\int_{0}^{1} \sin x dx$ using trapezoidal rule by dividing the range of integration into six equal parts.
- The acceleration of a missile during its first 40 seconds of flight is given in the following table. Find the velocity of the missile when t = 40s.

t(s)	0	10	20	30	40
	00	31.63	33.34	35.47	37.75
$a(m/s^2)$	30	31.00	00.04	00.17	

- Write the formula for Runge Kutta Method of order 2.
- Given y' = x y² and y(0) = 1, find y(0.1) using Taylor's series method, correct to two decimal places.
- Give the Fourier series solution of the one dimensional heat equation, with both ends of the bar kept at temperature 0 and the initial temperature function along the bar is f(x).
- 14. Solve the equation $u_{yy} = 0$ where u is a function of x and y.

SECTION - C

Answer any 4 questions from among the questions 15 to 20. These questions carry 4 marks each.

- Find a root of the equation 2x = cos x + 3, where x is in radians, correct to two decimal places, using General iteration method.
- 16. Prove that $\Delta + \nabla = \frac{\Delta}{\nabla} \frac{\nabla}{\Delta}$.
- 17. From the following table find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x = 3.5.

X	2	2.5	3	3.5	4
v	12	20.125	32	48.375	70

- 18. Given the differential equation $\frac{dy}{dx} = \frac{x^2}{y^2 + 1}$, with y(0) = 0, use Picard's method to find y when x = 0.5.
- 19. Use modified Euler's method to the equation $\frac{dy}{dt} = t + \sqrt{y}$, y(0) = 1 to find y(0.2) using three iterations taking h = 0.2.
- 20. Determine the solution of the heat equation $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$, where

u(0, t) = 0, u(l, t) = 0 and u(x, 0) = x, l being the length of the bar.

SECTION - D

Answer any 2 questions from among the questions 21 to 24. These questions carry 6 marks each.

- a) Use Newton Raphson method to find (- 10)^{1/3}, correct to two decimal places.
 - b) Find a real root of $x^3 3x 5 = 0$ using Bisection method.
- 22. Values of x (in degrees) and sin x are given in the following table :

x	15	20	25	30	35	40
y = sin x	0.2588	0.3420	0.4226	0.5	0.5736	0.6428

Determine the value of sin 38° using Newton's backward difference interpolation formula.

- 23. Use Fourth order Runge-Kutta method to the equation $\frac{dy}{dt} = t + y$, with y(0) = 1 to find y(0.1) and y(0.2).
- 24. Find the solution u(x, t) of the wave equation with initial deflection

$$f(x) = \begin{cases} \frac{2k}{L}x & \text{if } 0 < x < \\ \frac{2k}{L}(L-x) & \text{if } \frac{L}{2} < x < \end{cases}$$

and initial velocity 0.

-3-

I BINNE DE BERGER IN DE BE

K20U 0129

Reg. N	lo. :	
Name	:	

VI Semester B.Sc. Degree (CBCSS – Reg./Supple./Improv.) Examination, April 2020 (2014 Admission Onwards) CORE COURSE IN MATHEMATICS 6B12MAT : Complex Analysis

Time : 3 Hours

Max. Marks: 48

SECTION - A

All the first 4 questions are compulsory. They carry 1 mark each.

- Sketch the region {z : Re (iz) ≥ 0}.
- 2. Define Harmonic function.
- Find the Radius of convergence of ∑ 7"z".
- 4. Find the residue of $f(z) = e^z$ at z = 0.

SECTION - B

Answer any 8 questions from among the questions 5 to 14. These questions carry 2 marks each.

- 5. Give an example of a function which is differentiable exactly at one point and give its justification.
- 6. Verify Cauchy-Riemann equations for the function $f(z) = z^2$.
- 7. Evaluate $\int |z| dz$, where C is the line segment from origin to 1 + I.
- 8. Find the Radius of convergence of $\sum (1 + i)^n (z 3i)^n$.
- 9. Find the residue of $f(z) = \frac{9z + i}{z(z^2 + 1)}$ at z = i.

K20U 0129

- 10. Find the Laurent's series expansion of $f(z) = \frac{1}{z^5} \sin z$ with center 0.
- 11. State Taylors Theorem. Find the Taylors series expansion of $f(z) = \frac{1}{1+z^2}$ centered at z = 0.

-2-

- Give an example of a series which is convergent but not absolutely. Give justification.
- State Laplace's Equation. Give an example of a real valued function which satisfy Laplace's Equation on the complex plane.
- 14. State Cauchy's inequality.

SECTION - C

Answer **any 4** questions from among the questions **15** to **20**. These questions carry **4** marks **each**.

- 15. Prove that an analytic function of constant absolute value is constant in a domain.
- 16. Evaluate the following :

a)
$$\int_{0}^{1-i} z^2 dz$$

b)
$$\int_{0}^{0-3\pi i} e^2 dz$$

- 17. The power series $\sum a_n z^n$ converge at z = 1 and diverge at z = -1. Find the radius of convergence of $\sum a_n z^n$.
- 18. State and prove Residue Theorem.
- 19. Find an analytic function f(z) = u(x, y) + iv(x, y), where u(x, y) = xy.
- State and prove the theorem of convergence of power series.

MUT NO UTAMAN MAN

SECTION - D

Answer any 2 questions from among the questions 21 to 24. These questions carry 6 marks each.

- State and prove Cauchy Riemann equations.
- 22. a) Define singular point, isolated singular point, removable singular point, pole and essential singular point.
 - b) Give an example of a non-isolated singular point.
- 23. a) State and prove Cauchy's integral formula.
 - b) Evaluate $\int_{C} \frac{e^2}{z-2} dz$, where C is the circle |z| = 3.
- 24. Give examples and justifications of power series having Radius of convergence 1 and
 - a) Which diverge at every point on the circle of convergence ?
 - b) Which doesn't diverge at every point on the circle of convergence ?

K20U 0130

Max. Marks : 48

Reg. No) . :	
Name :		

VI Semester B.Sc. Degree (CBCSS-Reg/Supple/Improv.) Examination, April 2020 (2014 Admission Onwards) Core Course in Mathematics 6B13MAT : MATHEMATICAL ANALYSIS AND TOPOLOGY

Time : 3 Hours

SECTION - A

All the first 4 questions are compulsory. They carry 1 mark each.

- **1.** If I = [0, 4], calculate the norm of the partition $P = \{0, 1, 1.5, 2, 3.4, 4\}$.
- 2. Evaluate lim (f_p(x)) where $f_p(x) = \frac{x}{x-p}$ for all $x \ge 0$, $n \in \mathbb{N}$.
- 3. Fill in the blanks : The closure of set of all irrational numbers is _
- Write a pair of topologies T₁ and T₂ on X = {a, b, c} so that T₁∪T₂ is not a topology on X.

Answer any 8 questions from among the questions 5 to 14. These questions carry 2 marks each.

- 5. Show that every constant real valued function on [a, b] is in R [a, b].
- 6. State squeeze theorem for Riemann integrability.
- 7. Find the value of $\int_{-\infty}^{\infty} \operatorname{sgn}(x) dx$.
- 8. Prove that the sequence of functions, $f_r(x) = \frac{x}{n}$, $n \in \mathbb{N}$ converges uniformly on [0, 1].
- 9. State the Bounded Convergence Theorem.
- Define a metric space and write an example.
- Prove that in a metric space each open sphere is an open set.
- Give an example of a pair of subsets A and B of the real line with usual topology such that Int (A) ∪ Int(B) ≠ Int (A ∪ B).
- 13. Define subspace of a topological space and show that it is a topological space.
- 14. Is the real line \mathbb{R} with the usual topology separable ? Justify.

K20U 0130

SECTION - C

Answer any 4 questions from among the questions 15 to 20. These questions carry 4 marks each.

- 15. Prove that if $f: [a, b] \to \mathbb{P}$ is continuous on [a, b], then $f \in \mathcal{R}[a, b]$.
- 16. State and prove composition theorem in Riemann integrals. Deduce that if $f \in \mathcal{R}[a, b]$, then $|f| \in \mathcal{R}[a, b]$ and $\int_{-\infty}^{0} f \leq \int_{-\infty}^{0} f$.
- 17. Prove that a power series $\sum a_n x^n$ is absolutely convergent if |x| < R and is divergent if |x| > R. (Here R is the radius of convergence and assume that $0 < R < \infty$).
- Show that a subset F of a metric space is closed if and only if its complement. F' is open.
- Prove that a subspace Y of a complete metric space X is complete if and only if it is closed.
- Prove that in a topological space A = A∪D(A) and A is closed if and only if A _, D (A).

SECTION - D

Answer any 2 questions from among the questions 21 to 24. These questions carry 6 marks each.

- State and prove the Cauchy criterion for Riemann integrability.
- 22. Prove that if (\mathbf{f}_n) is a sequence of functions in $\mathscr{X}[\mathbf{a}, \mathbf{b}]$ and (\mathbf{f}_n) converges uniformly on $[\mathbf{a}, \mathbf{b}]$ to \mathbf{f} , then $\mathbf{f} \in \mathscr{X}[\mathbf{a}, \mathbf{b}]$ and $\int_{0}^{\mathbf{b}} \mathbf{f} = \lim_{n \to \infty} \int_{0}^{\mathbf{b}} \mathbf{f}$.
- 23. Show that in a complete metric space X, if $\{F_i\}$ is a decreasing sequence of non-empty closed subsets of X such that $d(F_r) \rightarrow 0$, then $\bigcap_{i=1}^{n} F_n$ contains exactly one point. Give an example to show that the condition $d(F_n) \rightarrow 0$ can not be dropped to obtain the result.
- Show that a subset of a topological space is dense if and only if it intersects every non-empty open set.

K19U 0122

Reg. N	0. :	•
Name		é

VI Semester B.Sc. Degree (CBCSS-Reg/Supple/Improv.) Examination, April 2019 (2014 Admission Onwards) CORE COURSE IN MATHEMATICS 6B10 MAT : Linear Algebra

Time : 3 Hours

SECTION - A

Max. Marks : 48

All the first 4 questions are compulsory. They carry 1 mark each.

- Give an example of a proper non trivial subspace of P(R), the vectorspace of all polynomials with real coefficients.
- A subset of a linearly dependent set can possibly be linearly independent. Justify by giving an example.
- 3. The null space of the operator T : $R^2 \mapsto R^2$ given by T(a₁, a₂) = (a₁, 0) is
- 4. The number of linearly independent solutions of the equation x + y + z = 0 is

SECTION - B

Answer any 8 questions from among the questions 5 to 14. These questions carry 2 marks each.

- In any vectorspace V show that (a + b) (x + y) = ax + bx + ay + by for all scalars a and b and all vectors x and y.
- Let V = R² = R × R where vector addition and scalar multiplication are defined by; (x₁, x₂) + (y₁, y₂) = (x₁ + y₁, x₂ + y₂) and r(x₁, x₂) = (rx₁, x₂). Is V a vectorspace over R ? Justify.
- Show that any intersection of subspaces of a vectorspace V is again a subspace of V.
- Let T : V → W be a linear transformation. Prove that N(T), the nullspace of T, is a subspace of V.
- Let T : V → W be an invertible linear transformation. Use dimension theorem to observe that dimV = dimW.
 P.T.O.

- Let V = C[a,b] be the vectorspace of all continuous real valued functions defined over the closed bounded interval [a, b]. Describe the fundamental theorem of calculus interms of linear transformations on V.
- Find the values of λ for which the following system of equations have non zero solutions.

 $\lambda x + 8y = 0$ $2x + \lambda y = 0$

- Verify that the set of all characteristic vectors of a square matrix associated with a fixed characteristic value λ is a subspace of the respective Eucledian space.
- Use Gauss elimination to solve the system of equations :

2x + y + z = 103x + 2y + 3z = 18x + 4y + 9z = 16

14. Use Gauss Jordan elimination to solve the system of equations :

2x + y + z = 103x + 2y + 3z = 18x + 4y + 9z = 16

SECTION - C

Answer any 4 questions from among the questions 15 to 20. These questions carry 4 marks each.

- Define vectorspace and show that in every vector space (-1) x is the additive inverse of x.
- 16. Define a basis of a vectorspace. Give an example of a basis of M_{2×2}(R).
- Let V and W be vectorspaces and let T : V → W be linear. Then prove that T is one to one if and only if N(T) = {0}.
- Suppose that AX = B has a solution. Show that this solution is unique if and only if AX = 0 has only the trivial solution.

-3-

K19U 0122

 Test the following system of equations for consistency and solve it if it is consistent.

x + 2y + 3z = 143x + y + 2z = 112x + 3y + z = 11

 Find the largest characteristic value and a corresponding characteristic vector of the matrix.

1 -3 3 3 -5 3 6 -6 4

SECTION - D

Answer any 2 questions from among the questions 21 to 24. These questions carry 6 marks each.

- 21. If S is a nonempty subset of a vectorspace V, then show that span (S) is a subspace of V and is the smallest subspace of V containing S. Under what further condition S can become a basis of V ?
- 22. Let V and W be vectorspaces over a common field F and suppose that V has a basis {x₁, x₂, ..., x_n}. Prove that for any fixed vectors y₁, y₂, ..., y_n in W there exists exactly one linear transformation T : V → W such that T(x_i) = y_i for i = 1 ..., n.
- 23. Show that the matrix

$$A = \begin{bmatrix} 0 & 0 & 1 \\ 3 & 1 & 0 \\ -2 & 1 & 4 \end{bmatrix}$$

satisfies Cayley Hamilton theorem and hence obtain A⁻¹.

24. Prove that

 $A = \begin{bmatrix} 0 & -2 & -3 \\ 1 & 3 & 3 \\ 0 & 0 & 1 \end{bmatrix}$

is diagonalizable and find the diagonal form.

K19U 0123

Reg. No. :

Name :

VI Semester B.Sc. Degree (CBCSS – Reg./Supple./Improv.) Examination, April 2019 (2014 Admission Onwards) CORE COURSE IN MATHEMATICS 6B11MAT – Numerical Methods and Partial Differential Equations

Time : 3 Hours

Max. Marks: 48

SECTION - A

All the 4 questions are compulsory. They carry 1 mark each.

Give the condition for convergence in the General Iteration method.

Complete the expression ∇ = - E⁻¹.

State Simpson's 1/3 rule of integration.

Give the (n + 1)th approximation step in Picard's method.

SECTION - B

Answer any 8 questions from among the questions 5 to 14. These questions carry 2 marks each.

5. Find an interval which contains the root of the equation $2x^3 - x^2 + x - 6 = 0$.

- Find a root of the equation log x cos x = 0, where x is in radians, correct to two decimal places, using Regula Falsi Method.
- Using Lagrange's interpolation formula find the approximate value of sin(π/6.).

x	0	$\pi/4$	π/2
$y = \sin x$	0	0.7071	1

P.T.O.

- 8. Show that $\Delta\left(\frac{t_i}{g_i}\right) = -\frac{g_i\Delta t_i t_i\Delta g_i}{g_ig_i + 1}$.
- 9. Find the approximate value of $\int_{0}^{1} \sin x dx$ using trapezoidal rule by dividing the range of integration into six equal parts.
- The acceleration of a missile during its first 40 seconds of flight is given in the following table. Find the velocity of the missile when t = 40s.

t(s)	0	10	20	30	40
	00	31.63	33.34	35.47	37.75
$a(m/s^2)$	30	31.00	00.04	00.17	

- Write the formula for Runge Kutta Method of order 2.
- Given y' = x y² and y(0) = 1, find y(0.1) using Taylor's series method, correct to two decimal places.
- Give the Fourier series solution of the one dimensional heat equation, with both ends of the bar kept at temperature 0 and the initial temperature function along the bar is f(x).
- 14. Solve the equation $u_{yy} = 0$ where u is a function of x and y.

SECTION - C

Answer any 4 questions from among the questions 15 to 20. These questions carry 4 marks each.

- Find a root of the equation 2x = cos x + 3, where x is in radians, correct to two decimal places, using General iteration method.
- 16. Prove that $\Delta + \nabla = \frac{\Delta}{\nabla} \frac{\nabla}{\Delta}$.
- 17. From the following table find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x = 3.5.

X	2	2.5	3	3.5	4
v	12	20.125	32	48.375	70

- 18. Given the differential equation $\frac{dy}{dx} = \frac{x^2}{y^2 + 1}$, with y(0) = 0, use Picard's method to find y when x = 0.5.
- 19. Use modified Euler's method to the equation $\frac{dy}{dt} = t + \sqrt{y}$, y(0) = 1 to find y(0.2) using three iterations taking h = 0.2.
- 20. Determine the solution of the heat equation $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$, where

u(0, t) = 0, u(l, t) = 0 and u(x, 0) = x, l being the length of the bar.

SECTION - D

Answer any 2 questions from among the questions 21 to 24. These questions carry 6 marks each.

- a) Use Newton Raphson method to find (- 10)^{1/3}, correct to two decimal places.
 - b) Find a real root of $x^3 3x 5 = 0$ using Bisection method.
- 22. Values of x (in degrees) and sin x are given in the following table :

x	15	20	25	30	35	40
y = sin x	0.2588	0.3420	0.4226	0.5	0.5736	0.6428

Determine the value of sin 38° using Newton's backward difference interpolation formula.

- 23. Use Fourth order Runge-Kutta method to the equation $\frac{dy}{dt} = t + y$, with y(0) = 1 to find y(0.1) and y(0.2).
- 24. Find the solution u(x, t) of the wave equation with initial deflection

$$f(x) = \begin{cases} \frac{2k}{L}x & \text{if } 0 < x < \\ \frac{2k}{L}(L-x) & \text{if } \frac{L}{2} < x < \end{cases}$$

and initial velocity 0.

-3-

K19U 0124

Reg. No. :

Name :

VI Semester B.Sc. Degree (CBCSS-Reg./Supple./Improv.) Examination, April 2019 (2014 Admission Onwards) CORE COURSE IN MATHEMATICS 6B12 MAT : Complex Analysis

Time : 3 Hours

Max. Marks: 48

SECTION - A

All the first 4 questions are compulsory. They carry 1 mark each.

- Write the polar form of the complex number z = 1 + i, using principle value of the argument.
- Write the triangle inequality of complex numbers.
- Find the Radius of convergence of ∑n zⁿ.
- Give an example of a function having a simple pole at origin.

SECTION - B

Answer any 8 questions from among the questions 5 to 14. These questions carry 2 marks each.

- 5. Verify Cauchy-Riemann equations for the function $f(z) = z^3$.
- Does there exist a function in the complex plane which is analytic exactly at one point ? Give justification.
- 7. Evaluate $\int_{C} e^{z} dz$, where C is the line segment from origin to 1 + i.
- 8. Evaluate $\int_C \frac{1}{z-i} dz$, using Cauchy's integral formula, where C is the circle |z| = 2.

P.T.O.

- 9. Find the radius of convergence of $\sum \frac{(2n)!}{(n!)^2} (z-3i)^n$.
- 10. Find the Laurent's series expansion of $f(z) = \frac{1}{z^3 z^4}$ about z = 0 in the region 0 < |z| < 1.
- Find the residue of f(z) = cotz at z = 0.
- State Taylors Theorem. Find the Taylors series expansion of f(z) = e^z centered at z = 0.
- Define Essential singularity. Give one example of a function having essential singularity at z = 0.
- Give an example of a series which is convergent but not absolutely. Give justification.

SECTION - C

Answer any 4 questions from among the questions 15 to 20. These questions carry 4 marks each.

- Prove that an analytic function whose modulus constant is constant in a domain.
- 16. State Cauchy's Integral Formula . Using this evaluate $\int_C \frac{z^3 6}{2z i} dz$,

where C := |z| = 1.

- 17. State and prove Morera's Theorem.
- 18. State Cauchy-Hadamard formula for Radius of convergence. Using this Evaluate the radius of convergence of $\sum \left(\frac{a}{b}\right)^n (z-3i)^n$.

-3-

K19U 0124

- 19. a) State Laurent's Theorem.
 - b) Find the Residue of $f(z) = z^2 e^{\overline{z}}$ with center 0.
- 20. a) State comparison test for convergence of a series.
 - b) Discuss the convergence of the series $\sum \frac{\sin n}{2^n} z^n$.

SECTION - D

Answer **any 2** questions from among the questions **21** to **24**. These questions carry **6** marks **each**.

- 21. a) Define Analytic function.
 - b) Give an example of a function which satisfy Cauchy-Riemann equation at origin but not analytic at origin and justification.
- 22. State and prove Cauchy's Integral formula.
- Give examples and justifications of power serieses having Radius of convergence
 1 and
 - a) which diverge at every point on the circle of convergence
 - b) which doesn't diverge at every point on the circle of convergence.
- 24. State and prove Residue theorem.

Reg. No. :

Name :

VI Semester B.Sc. Degree (CBCSS – Reg./Supple./Improv.) Examination, April 2019 (2014 Admission Onwards) CORE COURSE IN MATHEMATICS 6B13MAT : Mathematical Analysis and Topology

Max. Marks: 48

Time : 3 Hours

SECTION - A

All the first 4 questions are compulsory. They carry 1 mark each.

Define the Riemann sum of a function f : [a, b] → ℝ corresponding to a tagged partition P
 = {([x_i − 1, x_i], t_i)}ⁿ_{i=1}.

2. Find the radius of convergence of $\sum \frac{x^n}{n}$.

- State True or False: The subspace (0, 1] of ℝ with usual metric is a complete metric space.
- Suppose that T is the discrete topology on X = {a, b, c, d} and A = {b, c}. Then find Int(A).

SECTION - B

Answer any 8 questions from among the questions 5 to 14. These questions carry 2 marks each.

5. If $f \in R[a, b]$ and $|f(x)| \le M$ for all $x \in [a, b]$, then show that $\left|\int_a^b f\right| \le M(b-a)$.

 Show that Thomae's function, f: [0, 1] → R given below is Riemann integrable over [0, 1].

0, when x is irrational

$$f(x) = \begin{cases} 1, \text{ when } x = 0 \\ \frac{1}{n}, \text{ when } x = \frac{m}{n} \text{ is rational and is in the lowest form} \end{cases}$$

P.T.O.

- -2-
- 7. Prove that if f and g belong to R[a, b], then the product fg belongs to R[a, b].
- 8. Test the uniform convergence of the sequence of functions, $f_n(x) = \frac{x}{n}$, $n \in \mathbb{N}$ on [0, 1].
- Prove that if a sequence of continuous functions (f_n) defined on A ⊆ ℝ converges uniformly on A to a function f, then f is continuous on A.
- 10. Show that in a metric space each open sphere is an open set.
- 11. Describe the Cantor set and show that it is closed in R.
- Prove that if a convergent sequence in a metric space has infinitely many distinct points, then its limit is a limit point of the set of terms of the sequence.
- Prove that in the class of all topological spaces the relation, ~ defined by X ~ Y iff X and Y are homeomorphic is an equivalence relation.
- 14. Is the union of two topologies on a set a topology ? Justify.

Answer any 4 questions from among the questions 15 to 20. These questions carry 4 marks each.

- 15. Show that if $f : [a, b] \rightarrow \mathbb{R}$ is monotone on [a, b], then $f \in R [a, b]$.
- 16. Using the substitution theorem evaluate $\int_{1}^{4} \frac{\sin \sqrt{t}}{\sqrt{t}} dt$.
- 17. State and prove Cauchy criterion for uniform convergence.
- Show that in a metric space X any finite intersection of open subsets of X is open in X. Give an example to show that in a metric space, a countable intersection of open sets need not be open.
- Define the closure of a set in a metric space, give an example and show that closure of a set A is the smallest closed set containing A.
- Let f: X → Y be a mapping of one topological space into another. Show that f is continuous if and only if f⁻¹ (F) is closed in X whenever F is closed in Y.

. -3-

SECTION - D

Answer any 2 questions from among the questions 21 to 24. These questions carry 6 marks each.

- Prove that if f, g : [a, b] → ℝ are Riemann integrable on [a, b], then f + g is also integrable on [a, b].
- 22. If $f_n : [a, b] \to \mathbb{R}$ are Riemann integrable over [a, b] for every $n \in \mathbb{N}$ and $\sum f_n$ converges to f uniformly on [a, b], then show that f is Riemann integrable and

$$\int_a^b f = \sum_{n=1}^\infty \int_a^b f_n$$

- If {A_n} is a sequence of nowhere dense subsets in a complete metric space X, then prove that there exists a point in X which is not in any of the A'_ns.
- 24. Let X be a non-empty set and C be a class of subsets of X which is closed under the formation of arbitrary intersections and finite unions. Prove that there exists a topology on X such that the class of all closed subsets of the space X coincides with C.

Reg. No. :	stand, and the solider name of parts	an shin kanja ja
Name :		COLUMN REAL OF

VI Semester B.Sc. Degree (CBCSS – Reg./Supple./Improv.) Examination, April 2019 (2014 Admission Onwards) CORE COURSE IN MATHEMATICS 6B14 MAT : (Elective – A) : Operations Research

Time : 3 Hours

Max. Marks: 48

K19U 0126

SECTION - A

All the first 4 questions are compulsory. They carry 1 mark each.

- 1. Define positive semi definite quadratic form.
- 2. Define the term feasible solution of a linear programming problem.
- 3. What is an unbalanced transportation problem ?
- Define two person zero sum game.

SECTION - B

Answer any 8 questions from among the questions 5 to 14. These questions carry 2 marks each.

- 5. Show that $S = \{(x_1, x_2) : x_1^2 + x_2^2 \le 4\}$ is a convex set.
- 6. Write the quadratic form $x_1^2 + 2x_2^2 7x_3^2 4x_1x_2 + 3x_1x_3 5x_2x_3$ in the form X^TAX.
- 7. Obtain all basic solutions to the following system of linear equations :

 $x_1 + 2x_2 + x_3 = 4 : 2x_1 + x_2 + 5x_3 = 5.$

State the general LPP in the standard form.

P.T.O.

- 9. Give a mathematical formulation of the transportation problem.
- 10. Explain loops in transportation tables.
- 11. Explain the difference between transportation problem and assignment problem.
- 12. What is no passing rule in a sequencing algorithm ?
- 13. What are the properties of a game ?
- 14. Explain the concept of value of the game.

SECTION - C

Answer any 4 questions from among the questions 15 to 20. These questions carry 4 marks each.

- Prove that the set of all convex combinations of a finite number of points S ⊂ Rⁿ is a convex set.
- 16. A firm manufactures two types of products A and B and sells them at a profit of Rs. 2 on type A and Rs. 3 on type B. Each product is processed on two machines G and H. Type A requires 1 minute of processing time on G and 2 minutes on H; type B requires 1 minute on G and 1 minute on H. The machine G is available for not more than 6 hours 40 minutes while machine H is available for 10 hours during any working day. Formulate the problem as a linear programming problem.
- 17. What are the methods for finding initial basic feasible solution of the transportation problem ? Explain any one.
- Describe a method of drawing minimum number of lines in the context of assignment problem.
- 19. What are the main assumptions made while dealing with sequencing problem ?
- 20. Find the saddle point of the payoff matrix.
- $\begin{pmatrix} 4 & 1 & -3 \\ 3 & 2 & 5 \\ 0 & 1 & 6 \end{pmatrix}$

SECTION - D

Answer any 2 questions from among the questions 21 to 24. These questions carry 6 marks each.

21. Solve using simplex method :

Maximize $Z = 5x_1 + 3x_2$

Subject to $3x_1 + 5x_2 \le 15$

 $5x_1 + 2x_2 \le 10$ and $x_1 \ge 0$, $x_2 \ge 0$.

22. Describe MODI method in transportation problem.

23. Solve the following assignment problem ?

	1	2	3	4	
A	49	60	45	61	
в	55	63	45	61	
С	52	62	49	68	
D	55	64	48	66	

24. Solve the following 2 × 3 game graphically.

Player B

Player A $\begin{pmatrix} 1 & 3 & 11 \\ 8 & 5 & 2 \end{pmatrix}$

NUM CHIALI DO MANINI DI DUCHONS

Reg,	No.	• •	hd	 	 	•
Name	»:			 	 	

VI Semester B.Sc. Degree (CBCSS – Reg./Supple./Improv.) Examination, April 2020 (2014 Admission Onwards) CORE COURSE IN MATHEMATICS 6B14MAT (Elective A) : Operations Research

Time : 3 Hours

Max. Marks: 48

SECTION - A

All the first 4 questions are compulsory. They carry 1 mark each.

- 1. Define global minimum of a function f(x).
- 2. What do you mean by degeneracy in a linear programming problem ?
- 3. What is assignment problem ?
- Define saddle point of a game.

SECTION - B

Answer any 8 questions from among the questions 5 to 14. These questions carry 2 marks each.

- 5. Show that the function $f((x_1, x_2)) = x_1^2 + x_2^2$ is a convex function over all of \mathbb{R}^2 .
- 6. Determine whether the quadratic form $2x_1^2 + 6x_2^2 6x_1x_2$ is positive definite or negative definite.
- 7. Define the term basic solution. How many basic solutions are there to a given system of two simultaneous linear equation in four unknowns ?
- 8. State the general LPP in the canonical form.
- Explain least cost method to solve transportation problem for an initial solution.

P.T.O.

K20U 0131

K20U 0131

-2-

10. What is degeneracy in transportation problems ?

11. Give two applications of assignment problem.

12. Define the sequencing problem with n jobs and two machines.

13. What assumptions are made in the theory of games ?

14. Explain the dominance property in game theory.

SECTION - C

Answer any 4 questions from among the questions 15 to 20. These questions carry 4 marks each.

- 15. Let f(x) be a convex function on a convex set S. Prove that f(x) has a local minimum on S, then this local minimum is also a global minimum on S.
- 16. Solve graphically Max Z = 80x, + 55x,

Subject to $4x_1 + 2x_2 \le 40$

 $2x_1 + 4x_2 \le 32 \ x_1 \ge 0, \ x_2 \ge 0.$

17. Obtain an initial basic feasible solution to the following transportation problem :

	D	E	F	G	available
A	11	13	17	14	250
в	16	18	14	10	300
С	21	24	13	10	400
requirement	200	225	275	250	

18. Show that the optimal solution of a assignment problem is unchanged if we add or subtract the same constant to the entries of any row or column of the cost matrix.

19. Explain the sequencing problem with n jobs and k machines.

20. Explain the graphical method of solving a game.

SECTION -- D

-9-

Answer any 2 questions from among the questions 21 to 24. These questions carry 6 marks each.

- Define the dual of a linear programming problem. Prove that the dual of the dual is the primal.
- 22. Solve the following transportation problem,

	X	Y	Z	Availability
Α	50	30	220	1
в	90	45	170	з
C	250	200	50	1
requirement	4	2	2	

- 23. Explain the Hungarian method to solve an assignment problem.
- 24. Describe the procedure to solve any 2×2 two person zero sum game without any saddle point.