K19U 2254

Reg. No. :

Name :

V Semester B.Sc. Degree (CBCSS-Reg./Sup./Imp.) Examination, November - 2019 (2014 Admn. Onwards) Core Course in Mathematics 5B05 MAT : REAL ANALYSIS

Time: 3 Hours

Max. Marks: 48

SECTION - A

Instructions: Answer all questions. Each question carries One mark. (4×1=4)

- 1. State Arithmetic-Geometric Mean Inequality.
- 2. Find $\sup\left\{\frac{1}{m}-\frac{1}{n}:n\in\mathbb{N}\right\}$.
- **3.** Show that the sequence $\left(\frac{1}{n}\right)$ is a Cauchy sequence.
- 4. State Weierstrass Approximation theorem.

SECTION - B

Answer any **Eight** questions. Each carries **Two** marks. (8×2=16)

- 5. State and prove triangle inequality.
- 6. Show that the sequence (2ⁿ) does not converges.
- 7. Show that the series $\sum_{n=1}^{\infty} \cos n$ is divergent.
- 8. Show that if a convergent series contains only a finite number of negative terms, then prove that it is absolutely convergent.
- 9. Let $X = (x_n)$ be a nonzero sequence in \mathbb{R} and let $a = \lim \left(n \left(1 \left| \frac{x_{n-1}}{x_n} \right| \right) \right)$,

whenever the limit exists. Then prove that $\sum x_n$ is absolutely convergent when a > 1 and is not absolutely convergent when a < 1.

K19U 2254

10. What do you mean by saying that a function is continuous at a point c.

- **11.** Let $A \subset \mathbb{R}$, let f and g be functions on A to \mathbb{R} , and if $g(x) \neq 0$ for all $x \in \mathbb{R}$. Suppose that $c \in A$ and that f and g are continuous at c. Then show that f/g is continuous at c.
- **12.** Give an example of two functions f and g that are both discontinuous at a point c in \mathbb{R} such that the sum f + g is continuous at c.
- **13.** If $f: A \rightarrow \mathbb{R}$ is a Lipschitz function, then prove that f is uniformly continuous on A.
- **14.** Let $I \subset \mathbb{R}$ be an interval and $f: I \to \mathbb{R}$ be increasing on I. If $c \in I$ then prove that f is continuous at c if and only if $j_t(c) = 0$, where $j_t(c)$ is the jump of f at c.

SECTION - C

Answer any Four questions. Each carries Four marks.

 $(4 \times 4 = 16)$

- **15.** Prove that the set \mathbb{R} of real numbers is not countable.
- 16. Let $X = (x_n)$ and $Z = (z_n)$ be sequences of real numbers that converges to x and z, respectively, where z_n and z are nonzero real numbers. Then show that X/Z converges to x/z.
- **17.** Let A be an infinite subset of \mathbb{R} that is bounded above and let $u = \sup A$. Show that there exists an increasing sequence (x_n) with $x_n \in A$ for all $n \in \mathbb{N}$ such that $u = \lim(x_n)$.
- **18.** Show that every contractive sequence is a Cauchy sequence and therefore is convergent.
- **19.** State and prove Abel's test for the convergence of the product of two series.
- **20.** Let I = [a, b] be a closed, bounded interval and let $f : I \to \mathbb{R}$ be continuous on *I*. If $k \in \mathbb{R}$ is any number satisfying inf $f(I) \le k \le \sup f(I)$, then prove that there exists a number $c \in I$ such that f(c) = k.

(3)

K19U 2254

SECTION - D

Answer any Two questions Each question carries six marks.(2×6=12)

21. a) If
$$S = \left\{\frac{1}{n} : n \in S\right\}$$
 then prove that $\inf S = 0.$ (2)

- b) Prove that there exists a positive number x such that $x^2 = 2$. (4)
- 22. a) Let $X = (x_n : n \in \mathbb{N})$ be a sequence of real numbers and let $m \in \mathbb{N}$. Then prove that the *m*-tail converges if X converges. (2)
 - b) Let a > 0. Construct a sequence s_n of real numbers that converges to \sqrt{a} . (4)
- 23. a) Let $X = (x_n)$ be a sequence in \mathbb{R} and suppose that the limit $r = \lim |x_n|^{\frac{1}{n}}$ exists in \mathbb{R} . Then prove that $\sum x_n$ is absolutely convergent when r < 1and is divergent when r > 1. (3)
 - b) Show that the absolute value function f(x) = |x| is continuous at every point $c \in \mathbb{R}$. (3)
- 24. a) What do you mean by saying that a function is bounded on a subset of \mathbb{R} . Give an example of a bounded set. (2)
 - b) Show that every polynomial of odd degree with real coefficients has at leat one real root. (4)

Reg. No. :

Name :

V Semester B.Sc. Degree (CBCSS – Sup./Imp.) Examination, November 2021 (2015 – '18 Admns.) CORE COURSE IN MATHEMATICS 5B05MAT : Real Analysis

Time : 3 Hours

Max. Marks : 48

SECTION – A

Answer all the questions. Each carries 1 mark.

1. Write the Supremum of $\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$.

- 2. Define contractive sequences.
- 3. Check the convergence of the series $\sum_{n=1}^{\infty} \frac{n!}{n^n}$.
- 4. State sequential criterion for continuity.

SECTION – B

Answer any eight questions. Each carries 2 marks.

- 5. Find all $x \in \mathbb{R}$ such that $\frac{2x+1}{x+2} < 1$.
- 6. If x > -1, show that $(1 + x)^n \ge 1 + nx \ \forall n \in \mathbb{N}$.
- 7. If t > 0, prove that there is an n_t in \mathbb{N} such that $0 < \frac{1}{n} < t$.
- 8. Show that convergent sequences in \mathbb{R} are bounded.
- 9. Suppose $X = (x_n)$, $Y = (y_n)$ and $Z = (z_n)$ are sequences in \mathbb{R} such that $x_n \le y_n \le z_n \forall n \in \mathbb{N}$ and $\lim(x_n) = \lim(z_n)$. Show that $Y = (y_n)$ is convergent and $\lim(x_n) = \lim(y_n) = \lim(z_n)$.
- 10. Show that the series $\sum_{n=1}^{\infty} \frac{1}{n^2 + n}$ converges. 11. Check the convergence of $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$.

P.T.O.

K21U 1532

K21U 1532

- 12. State and prove Abel's Lemma.
- 13. Let I be an interval and let $f : I \to \mathbb{R}$ be continuous on I. Show that f(I) is an interval.
- 14. If $f : I \to \mathbb{R}$ is uniformly continuous on a subset A of \mathbb{R} and if (x_n) is a Cauchy sequence in A. Show that $(f(x_n))$ is also a Cauchy sequence in \mathbb{R} .

SECTION - C

Answer any four questions. Each carries 4 marks.

- 15. Show that the set \mathbb{Q} of rational numbers is dense in the set \mathbb{R} of real numbers.
- 16. For a, $b \in \mathbb{R}$, show that $|a + b| \le |a| + |b|$ and deduce $||a| |b|| \le |a b|$.
- 17. Let (x_n) be a sequence of real numbers such that $L = \lim_{n \to \infty} \left(\frac{x_{n+1}}{x_n} \right)$ exists and let L < 1. Show that (x_n) converges and $\lim_{n \to \infty} (x_n) = 0$.
- 18. State and prove the limit comparison test for series.
- 19. Let $Z = (z_n)$ be a decreasing sequence of strictly positive numbers with $\lim(z_n) = 0$. Show that the alternating series $\sum (-1)^{n+1} z_n$ is convergent.
- 20. Let I = [a, b] be a closed bounded interval and let $f : I \rightarrow \mathbb{R}$ be continuous on I. Show that f has an absolute maximum and an absolute minimum on I.

SECTION - D

Answer any two questions. Each carries 6 marks.

- 21. a) State and prove nested intervals property.
 - b) Using nested intervals property, show that [0, 1] is uncountable.
- 22. a) A sequence of real numbers is convergent if and only if it is a Cauchy sequence. Prove.
 - b) Show that $\lim(n^{\frac{1}{n}}) = 1$.
- 23. a) State and prove Raabe's test.
 - b) If a and b are positive numbers, show that $\sum (an + b)^{-p}$ converges if p > 1 and diverges if $p \le 1$.
- 24. a) Let I = [a, b] and let $f : I \rightarrow \mathbb{R}$ be continuous on I. If f(a) < 0 < f(b), then there exists a number $c \in (a, b)$ such that f(c) = 0.
 - b) Show that every polynomial of odd degree with real coefficients has at least one real root.

Reg. No. :

Name :

V Semester B.Sc. Degree (CBCSS – Reg./Sup./Imp.) Examination, November 2020 (2014 Admn. Onwards) CORE COURSE IN MATHEMATICS 5B05MAT : Real Analysis

Time : 3 Hours

Max. Marks: 48

SECTION - A

(Answer all the questions. Each carries 1 mark)

- 1. Find all real x so that |x 1| < |x|.
- 2. Give two divergent sequences (x_n) and (y_n) such that $(x_n + y_n)$ is convergent.
- 3. State nth term test.
- 4. Show that $f(x) = \frac{1}{x}$, $\forall x$ is not uniformly continuous on $(0, \infty)$. (4×1=4)

SECTION – B

(Answer any eight questions. Each carries 2 marks)

- 5. There does not exists a rational number r such that $r^2 = 2$. Prove.
- 6. For positive real numbers a and b, show that $\sqrt{ab} \le \frac{1}{2}(a+b)$, where equality occurring if and only if a = b.
- 7. Define infimum of a set. Find inf S if $S = \left\{\frac{1}{n} : n \in \mathbb{N}\right\}$.
- 8. A sequence in \mathbb{R} can have atmost one limit. Prove.

P.T.O.

K20U 1532

K20U 1532

-2-

- 9. Prove that every Cauchy sequence is bounded.
- 10. If Σx_n and Σy_n are convergent, show that the series $\Sigma (x_n + y_n)$ is convergent.
- 11. Check the convergence of $\sum_{n=1}^{\infty} \frac{1}{n^p}$.
- 12. If $X = (x_n)$ is a decreasing sequence of real numbers with $\lim x_n = 0$, and if the partial sums (s_n) of Σy_n are bounded, prove that the series $\Sigma x_n y_n$ is convergent.
- 13. Let I be a closed bounded interval and let $f : I \to \mathbb{R}$ be continuous on I. Show that the set $f(I) = \{f(x) : x \in I\}$ is a closed bounded interval.
- Give an example to show that every uniformly continuous functions are not Lipschitz functions.

SECTION - C

(Answer any four questions. Each carries 4 marks)

- 15. State and prove Archimedean property of $\mathbb R$.
- 16. If S is a subset of $\mathbb R$ that contains at least two points and has the property

If $x, y \in S$ and x < y, then $[x, y] \subseteq S$.

Show that S is an interval.

- 17. For C > 0, show that $\lim (C^{\frac{1}{n}}) = 1$.
- 18. Discuss the convergence of the Geometric series $\sum_{n=0}^{\infty} r^n$ for $r \in \mathbb{R}$.
- 19. If Σx_n is an absolutely convergent series in \mathbb{R} , show that any rearrangement Σy_k of Σx_n converges to the same value.
- 20. Let I be a closed bounded interval and let $f : I \to \mathbb{R}$ be continuous on I. Show that f is uniformly continuous on I. (4×4=16)

SECTION – D (Answer **any two** questions. **Each** carries **6** marks)

- 21. a) Prove the existence of a real number x such that $x^2 = 2$.
 - b) If $a, b \in \mathbb{R}$, show that $||a| |b|| \le |a b|$.
- 22. a) State and prove Bolzano Weierstrass Theorem for sequences.
 - b) If $X = (x_n)$ is a bounded increasing sequence in \mathbb{R} , show that it converges and $\lim(x_n) = \sup\{x_n : n \in \mathbb{N}\}$.
- 23. a) State and prove D'Alembert ratio test.
 - b) Check the convergence of the series whose nth term is $\frac{(n!)^2}{(2n)!}$.
- 24. a) Let I be a closed bounded interval and let $f: I \to \mathbb{R}$ be continuous on I. If $\varepsilon > 0$, then there exists step functions $s_{\varepsilon}: I \to \mathbb{R}$ such that $|f(x) - s_{\varepsilon}(x)| < \varepsilon, \forall x \in I.$
 - b) Let $f(x) = x, \forall x \in [0, 1]$. Calculate the first few Bernstein polynomials for f. (2×6=12)

K22U 2321

Reg. No. :

Name :

V Semester B.Sc. Degree (CBCSS – OBE – Regular/Supplementary/ Improvement) Examination, November 2022 (2019 Admission Onwards) CORE COURSE IN MATHEMATICS 5B06MAT : Real Analysis – I

Time : 3 Hours

Max. Marks: 48

PART – A

Answer **any 4** questions. They carry **1** mark **each**.

- 1. Determine the set A of all real numbers x such that $2x + 3 \le 6$.
- 2. Let $S = \left\{1 \frac{(-1)^n}{n} : n \in \mathbb{N}\right\}$. Find inf S and sup S.
- 3. State monotone convergence theorem.
- 4. State alternating series test.
- 5. Prove that signum function *sgn* is not continuous at 0.

PART – B

Answer **any 8** questions from among the questions **6** to **16**. These questions carry **2** marks **each**.

- 6. Find all $x \in \mathbb{R}$ that satisfy |x + 1| + |x 2| = 7.
- 7. State and prove triangle inequality.
- 8. If $x \in \mathbb{R}$, prove that there exists $n \in \mathbb{N}$ such that x < n.
- 9. State and prove squeeze theorem.
- 10. Let (x_n) be a sequence of positive real numbers such that $L = \lim \frac{x_{n+1}}{x_n}$ exists. If L < 1, prove that (x_n) converges and $\lim(x_n) = 0$.

P.T.O.

K22U 2321

- 11. Prove that a Cauchy sequence of real numbers is bounded.
- 12. Prove that the sequence $\left(1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{n}\right)$ is divergent.
- 13. Prove that $\sum_{n=0}^{\infty} r^n$ is convergent if |r| < 1 and divergent if $|r| \ge 1$.

14. Prove that $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1}}$ is divergent.

15. Discuss the convergence of the series $\sum_{n=1}^{\infty} \frac{n}{n^2 + 1}$.

16. State and prove sequential criterion for continuity.

PART – C

Answer **any 4** questions from among the questions **17** to **23**. These questions carry **4** marks **each**.

- 17. Let S be a subset of R that contains atleast two points and has the property if x, y ∈ S and x < y. Prove that [x, y] ⊆ S.</p>
- 18. Let (x_n) and (y_n) be sequences of real numbers that converge to x and y respectively. Prove that (x_ny_n) converges to xy.

19. Let
$$e_n = \left(1 + \frac{1}{n}\right)^n$$
 for $n \in \mathbb{N}$. Prove that (e_n) is convergent.

20. Show that
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)} = \frac{1}{4}$$
.

21. State and prove Ratio test.

- 22. Prove that $g(x) = \sin \frac{1}{x}$ is continuous at every point $c \neq 0$.
- 23. State and prove boundedness theorem.

PART – D

Answer **any 2** questions from among the questions **24** to **27**. These questions carry **6** marks **each**.

- 24. a) State and prove nested interval property.
 - b) Prove that \mathbb{R} is not countable.
- 25. a) Prove that every contractive sequence is convergent.

b) Let
$$f_1 = f_2 = 1$$
 and $f_{n+1} = f_n + f_{n-1}$. Define $x_n = \frac{f_n}{f_{n+1}}$. Prove that $\lim x_n = \frac{-1 + \sqrt{5}}{2}$.

- 26. a) State and prove integral test.
 - b) Let a and b be two positive numbers. Prove that $\Sigma(an + b)^{-p}$ converges if p > 1 and diverges if $p \le 1$.
- 27. State and prove maximum minimum theorem.

K22U 1961

Reg. No. :

Name :

V Semester B.Sc. Degree (CBCSS – Supplementary) Examination, November 2022 (2016-18 Admissions) CORE COURSE IN MATHEMATICS 5B05 MAT : Real Analysis

Time : 3 Hours

Max. Marks: 48

SECTION - A

Answer all the questions, each question carries one mark.

- 1. State Supremum property of \mathbb{R} .
- 2. Prove that a sequence in \mathbb{R} can have atmost one limit.
- 3. Prove that $\sum_{n=1}^{\infty} \frac{1}{n^2 + n}$ converges.
- 4. Let $I \subseteq \mathbb{R}$ be an interval and let $f : I \to \mathbb{R}$ be increasing on I. If $c \in I$, prove that f is continuous at c if and only if $j_f(c) = 0$.

SECTION - B

Answer any eight questions, each question carries two marks.

- 5. Determine the set $B = \{x \in \mathbb{R} : x^2 + x > 2\}.$
- 6. State and prove Bernoulli's inequality.
- 7. Let $S = \left\{1 \frac{(-1)^n}{n} : n \in \mathbb{N}\right\}$. Find inf S and sup S.
- 8. Use the definition of the limit of a sequence to prove that $\lim\left(\frac{2n}{n+1}\right) = 2$.
- 9. State and prove squeeze theorem.

P.T.O.

K22U 1961

- 10. Prove that $\sum_{n=0}^{\infty} r^n$ is convergent if |r| < 1 and divergent if $|r| \ge 1$.
- 11. Establish the convergence or divergence of the series whose nth term is $\frac{n}{(n+1)(n+2)}$
- 12. State and prove Dirichlet's test.
- 13. Prove that Dirichlet's function is discontinuous on \mathbb{R} .
- 14. State and prove Bolzano's intermediate value theorem.

Answer any four questions, each question carries four marks.

- 15. State and prove Archimedean property.
- 16. State and prove nested interval property.
- 17. Let y_n be defined by $y_1 = 1$, $y_{n+1} = \frac{1}{4}(2y_n + 3)$ for $n \ge 1$. Prove that $\lim y_n = \frac{3}{2}$.
- 18. Prove that the p- series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges when p > 1.
- 19. State and prove integral test.
- 20. State and prove uniform continuity theorem.

SECTION - D

Answer any two questions, each question carries six marks.

- 21. Prove that there exists a positive real number x such that $x^2 = 2$.
- 22. Prove that every contractive sequence is a Cauchy sequence.
- 23. a) State and prove ratio test.

b) Establish the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{n!}{n^n}$. 24. State and prove location of roots theorem.

Reg. No. :

Name :

V Semester B.Sc. Degree CBCSS (OBE) Regular Examination, November 2021 (2019 Admn. Only) CORE COURSE IN MATHEMATICS 5B06 MAT : Real Analysis – I

Time : 3 Hours

Max. Marks: 48

PART – A

Answer any four questions. Each question carries 1 mark.

- 1. For $a, b \in \mathbb{R}$ if a + b = 0, then prove that b = -a.
- 2. Find the supremum of the set $\left\{1-\frac{1}{n}: n \in \mathbb{N}\right\}$.
- 3. Show that $\lim_{n \to \infty} \frac{1}{n} = 0$.
- 4. Give an example of a discontinuous function on \mathbb{R} .
- 5. Define sequential criterion for the continuity of a function f on \mathbb{R} . (4×1=4)

Answer any eight questions. Each question carries 2 marks.

- 6. State and prove Archimedean property.
- 7. Determine the set $B = \left\{ x \in \mathbb{R} : x^2 + x > 2 \right\}$.
- 8. Let $J_n = \left(0, \frac{1}{n}\right)$ for $n \in \mathbb{N}$, prove that $\bigcap_{n=1}^{\infty} J_n = \emptyset$.
- 9. Prove that a sequence in \mathbb{R} can have at most one limit.
- 10. Show that a convergent sequence of real numbers is bounded.
- 11. Prove that every convergent sequence is a Cauchy sequence.

P.T.O.

K21U 4551

K21U 4551

12. If the series $\sum x_n$ converges, then prove that $\lim_{n \to \infty} x_n = 0$.

13. Check the convergence of the series $\sum_{n=1}^{\infty} \frac{1}{n^2 + n}$.

- 14. Show that every absolutely convergent series is convergent.
- 15. Show that the function $f(x) = \frac{1}{x}$ is not bounded on the interval $(0, \infty)$.
- If functions f, g are continuous at a point c, then prove that f + g is also continuous at c. (8×2=16)

$$PART - C$$

Answer any four questions. Each question carries 4 marks.

- 17. Prove that the set of real numbers is not countable.
- 18. State and prove Squeeze theorem.
- 19. State and prove Bolzano Weierstrass theorem.
- 20. Let $X = (x_n)$ and $Y = (y_n)$ that converges to x and y respectively, then prove that X + Y converges to x + y.
- 21. Show that $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent.
- 22. If $X = (x_n)$ is a convergent monotone sequence and the series $\sum y_n$ is convergent, then prove that the series $\sum x_n y_n$ is convergent.
- 23. State and prove preservation of intervals theorem.

 $(4 \times 4 = 16)$

PART – D

Answer any two questions. Each question carries 6 marks.

- 24. Prove that there exists a positive real number x such that $x^2 = 2$.
- 25. State and prove Monotone convergence theorem.
- 26. State and prove D'Alembert's ratio test for series.
- 27. If $f : [a, b] \rightarrow \mathbb{R}$ is a continuous function, then prove that f has an absolute maximum and absolute minimum on [a, b]. (2×6=12)