Reg. No. : \qquad
Name: \qquad

V Semester B.Sc. Degree (CBCSS-Reg./Sup./Imp.)
 Examination, November - 2019
 (2014 Admn. Onwards)
 Core Course in Mathematics
 5B05 MAT : REAL ANALYSIS

Time : 3 Hours
Max. Marks : 48

SECTION - A

Instructions: Answer all questions. Each question carries One mark.
$(4 \times 1=4)$

1. State Arithmetic-Geometric Mean Inequality.
2. Find $\sup \left\{\frac{1}{m}-\frac{1}{n}: n \in \mathbb{N}\right\}$.
3. Show that the sequence $\left(\frac{1}{n}\right)$ is a Cauchy sequence.
4. State Weierstrass Approximation theorem.

SECTION - B

Answer any Eight questions. Each carries Two marks.
5. State and prove triangle inequality.
6. Show that the sequence $\left(2^{n}\right)$ does not converges.
7. Show that the series $\sum_{n=1}^{\infty} \cos n$ is divergent.
8. Show that if a convergent series contains only a finite number of negative terms, then prove that it is absolutely convergent.
9. Let $X=\left(x_{n}\right)$ be a nonzero sequence in \mathbb{R} and let $a=\lim \left(n\left(1-\left|\frac{x_{n-1}}{x_{n}}\right|\right)\right)$, whenever the limit exists. Then prove that $\sum x_{n}$ is absolutely convergent when $a>1$ and is not absolutely convergent when $a<1$.

K19U 2254

10. What do you mean by saying that a function is continuous at a point c.
11. Let $A \subset \mathbb{R}$, let f and g be functions on A to \mathbb{R}, and if $g(x) \neq 0$ for all $x \in \mathbb{R}$. Suppose that $c \in A$ and that f and g are continuous at c. Then show that f / g is continuous at c.
12. Give an example of two functions f and g that are both discontinuous at a point c in \mathbb{R} such that the sum $f+g$ is continuous at c.
13. If $f: A \rightarrow \mathbb{R}$ is a Lipschitz function, then prove that f is uniformly continuous on A.
14. Let $I \subset \mathbb{R}$ be an interval and $f: I \rightarrow \mathbb{R}$ be increasing on I. If $C \in I$ then prove that f is continuous at c if and only if $j_{f}(c)=0$, where $j_{f}(c)$ is the jump of f at c.

SECTION - C

Answer any Four questions. Each carries Four marks.
15. Prove that the set \mathbb{R} of real numbers is not countable.
16. Let $X=\left(x_{n}\right)$ and $Z=\left(z_{n}\right)$ be sequences of real numbers that converges to x and z, respectively, where z_{n} and z are nonzero real numbers. Then show that X / Z converges to x / z.
17. Let A be an infinite subset of \mathbb{R} that is bounded above and let $u=\sup A$. Show that there exists an increasing sequence $\left(x_{n}\right)$ with $x_{n} \in A$ for all $n \in \mathbb{N}$ such that $u=\lim \left(x_{n}\right)$.
18. Show that every contractive sequence is a Cauchy sequence and therefore is convergent.
19. State and prove Abel's test for the convergence of the product of two series.
20. Let $I=[a, b]$ be a closed, bounded interval and let $f: I \rightarrow \mathbb{R}$ be continuous on I. If $k \in \mathbb{R}$ is any number satisfying inf $f(I) \leq k \leq \sup f(I)$, then prove that there exists a number $c \in l$ such that $f(c)=k$.

SECTION - D

Answer any Two questions Each question carries six marks. $(2 \times 6=12)$
21. a) If $S=\left\{\frac{1}{n}: n \in S\right\}$ then prove that inf $S=0$.
b) Prove that there exists a positive number x such that $x^{2}=2$.
22. a) Let $X=\left(x_{n}: n \in \mathbb{N}\right)$ be a sequence of real numbers and let $m \in \mathbb{N}$. Then prove that the m-tail converges if X converges.
b) Let $a>0$. Construct a sequence s_{n} of real numbers that converges to \sqrt{a}.
23. a) Let $X=\left(x_{n}\right)$ be a sequence in \mathbb{R} and suppose that the limit $r=\lim \left|x_{n}\right|^{\frac{1}{n}}$ exists in \mathbb{R}. Then prove that $\sum x_{n}$ is absolutely convergent when $r<1$ and is divergent when $r>1$.
b) Show that the absolute value function $f(x)=|x|$ is continuous at every point $c \in \mathbb{R}$.
24. a) What do you mean by saying that a function is bounded on a subset of \mathbb{R}. Give an example of a bounded set.
b) Show that every polynomial of odd degree with real coefficients has at leat one real root.

Reg. No. : \qquad
Name : \qquad

V Semester B.Sc. Degree (CBCSS - Sup./Imp.) Examination, November 2021 (2015 - '18 Admns.) CORE COURSE IN MATHEMATICS
 5B05MAT : Real Analysis

Time : 3 Hours
Max. Marks : 48

SECTION - A

Answer all the questions. Each carries 1 mark.

1. Write the Supremum of $\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$.
2. Define contractive sequences.
3. Check the convergence of the series $\sum_{n=1}^{\infty} \frac{n!}{n^{n}}$.
4. State sequential criterion for continuity.

SECTION - B

Answer any eight questions. Each carries 2 marks.
5. Find all $x \in \mathbb{R}$ such that $\frac{2 x+1}{x+2}<1$.
6. If $x>-1$, show that $(1+x)^{n} \geq 1+n x \forall n \in \mathbb{N}$.
7. If $t>0$, prove that there is an n_{t} in \mathbb{N} such that $0<\frac{1}{n_{t}}<t$.
8. Show that convergent sequences in \mathbb{R} are bounded.
9. Suppose $X=\left(x_{n}\right), Y=\left(y_{n}\right)$ and $Z=\left(z_{n}\right)$ are sequences in \mathbb{R} such that $x_{n} \leq y_{n} \leq z_{n} \forall n \in \mathbb{N}$ and $\lim \left(x_{n}\right)=\lim \left(z_{n}\right)$. Show that $Y=\left(y_{n}\right)$ is convergent and $\lim \left(x_{n}\right)=\lim \left(y_{n}\right)=\lim \left(z_{n}\right)$.
10. Show that the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}+n}$ converges.
11. Check the convergence of $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$.
12. State and prove Abel's Lemma.
13. Let I be an interval and let $f: I \rightarrow \mathbb{R}$ be continuous on I. Show that $f(I)$ is an interval.
14. If $f: I \rightarrow \mathbb{R}$ is uniformly continuous on a subset A of \mathbb{R} and if $\left(x_{n}\right)$ is a Cauchy sequence in A. Show that $\left(f\left(x_{n}\right)\right)$ is also a Cauchy sequence in \mathbb{R}.
SECTION - C

Answer any four questions. Each carries 4 marks.
15. Show that the set \mathbb{Q} of rational numbers is dense in the set \mathbb{R} of real numbers.
16. For $\mathrm{a}, \mathrm{b} \in \mathbb{R}$, show that $|\mathrm{a}+\mathrm{b}| \leq|\mathrm{a}|+|\mathrm{b}|$ and deduce $||\mathrm{a}|-|\mathrm{b}|| \leq|\mathrm{a}-\mathrm{b}|$.
17. Let $\left(x_{n}\right)$ be a sequence of real numbers such that $L=\lim \left(\frac{x_{n+1}}{x_{n}}\right)$ exists and let $L<1$. Show that $\left(x_{n}\right)$ converges and $\lim \left(x_{n}\right)=0$.
18. State and prove the limit comparison test for series.
19. Let $Z=\left(z_{n}\right)$ be a decreasing sequence of strictly positive numbers with $\lim \left(z_{n}\right)=0$. Show that the alternating series $\Sigma(-1)^{n+1} z_{n}$ is convergent.
20. Let $I=[a, b]$ be a closed bounded interval and let $f: I \rightarrow \mathbb{R}$ be continuous on I. Show that f has an absolute maximum and an absolute minimum on I .
SECTION - D

Answer any two questions. Each carries 6 marks.
21. a) State and prove nested intervals property.
b) Using nested intervals property, show that $[0,1]$ is uncountable.
22. a) A sequence of real numbers is convergent if and only if it is a Cauchy sequence. Prove.
b) Show that $\lim \left(n^{1 / n}\right)=1$.
23. a) State and prove Raabe's test.
b) If a and b are positive numbers, show that $\sum(a n+b)^{-p}$ converges if $p>1$ and diverges if $p \leq 1$.
24. a) Let $I=[a, b]$ and let $f: I \rightarrow \mathbb{R}$ be continuous on I. If $f(a)<0<f(b)$, then there exists a number $c \in(a, b)$ such that $f(c)=0$.
b) Show that every polynomial of odd degree with real coefficients has at least one real root.

Reg. No. : \qquad
Name : \qquad

V Semester B.Sc. Degree (CBCSS - Reg./Sup./Imp.)
 Examination, November 2020 (2014 Admn. Onwards) CORE COURSE IN MATHEMATICS 5B05MAT : Real Analysis

Time: 3 Hours
Max. Marks : 48

SECTION - A

(Answer all the questions. Each carries 1 mark)

1. Find all real x so that $|x-1|<|x|$.
2. Give two divergent sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ such that $\left(x_{n}+y_{n}\right)$ is convergent.
3. State $n^{\text {th }}$ term test.
4. Show that $f(x)=\frac{1}{x}, \forall x$ is not uniformly continuous on $(0, \infty)$.

> SECTION - B
> (Answer any eight questions. Each carries 2 marks)
5. There does not exists a rational number r such that $r^{2}=2$. Prove.
6. For positive real numbers a and b, show that $\sqrt{a b} \leq \frac{1}{2}(a+b)$, where equality
occurring if and only if $a=b$.
7. Define infimum of a set. Find inf S if $S=\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$.
8. A sequence in \mathbb{R} can have atmost one limit. Prove.
9. Prove that every Cauchy sequence is bounded.
10. If Σx_{n} and Σy_{n} are convergent, show that the series $\Sigma\left(x_{n}+y_{n}\right)$ is convergent.
11. Check the convergence of $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$.
12. If $X=\left(x_{n}\right)$ is a decreasing sequence of real numbers with $\lim x_{n}=0$, and if the partial sums $\left(s_{n}\right)$ of Σy_{n} are bounded, prove that the series $\sum x_{n} y_{n}$ is convergent.
13. Let I be a closed bounded interval and let $f: I \rightarrow \mathbb{R}$ be continuous on I. Show that the set $f(I)=\{f(x): x \in I\}$ is a closed bounded interval.
14. Give an example to show that every uniformly continuous functions are not Lipschitz functions.
$(8 \times 2=16)$

SECTION - C
 (Answer any four questions. Each carries 4 marks)

15. State and prove Archimedean property of \mathbb{Z}.
16. If S is a subset of \mathbb{R} that contains at least two points and has the property If $x, y \in S$ and $x<y$, then $[x, y] \subseteq S$.

Show that S is an interval.
17. For $C>0$, show that $\lim \left(C^{1 / n}\right)=1$.
18. Discuss the convergence of the Geometric series $\sum_{n=0}^{\infty} r^{n}$ for $r \in \mathbb{R}$.
19. If Σx_{n} is an absolutely convergent series in \mathbb{R}, show that any rearrangement Σy_{k} of Σx_{n} converges to the same value.
20. Let I be a closed bounded interval and let $f: I \rightarrow \mathbb{R}$ be continuous on I. Show that f is uniformly continuous on I .

SECTION - D

(Answer any two questions. Each carries 6 marks)
21. a) Prove the existence of a real number x such that $x^{2}=2$.
b) If $a, b \in \mathbb{Z}$, show that $||a|-|b|| \leq|a-b|$.
22. a) State and prove Bolzano Weierstrass Theorem for sequences.
b) If $X=\left(x_{n}\right)$ is a bounded increasing sequence in \mathbb{R}, show that it converges and $\lim \left(x_{n}\right)=\sup \left\{x_{n}: n \in \mathbb{N}\right\}$.
23. a) State and prove D'Alembert ratio test.
b) Check the convergence of the series whose $n^{\text {th }}$ term is $\frac{(n!)^{2}}{(2 n)!}$.
24. a) Let I be a closed bounded interval and let $f: I \rightarrow \mathbb{R}$ be continuous on I. If $\varepsilon>0$, then there exists step functions $\mathrm{S}_{\varepsilon}: \mathrm{I} \rightarrow \mathbb{R}$ such that $\left|f(x)-s_{\varepsilon}(x)\right|<\varepsilon, \forall x \in I$.
b) Let $f(x)=x, \forall x \in[0,1]$. Calculate the first few Bernstein polynomials for f.

Reg. No. : \qquad
Name : \qquad

V Semester B.Sc. Degree (CBCSS - OBE - Regular/Supplementary/ Improvement) Examination, November 2022
 (2019 Admission Onwards)
 CORE COURSE IN MATHEMATICS
 5B06MAT : Real Analysis - I

Time: 3 Hours
Max. Marks : 48

PART - A

Answer any 4 questions. They carry 1 mark each.

1. Determine the set A of all real numbers x such that $2 x+3 \leq 6$.
2. Let $S=\left\{1-\frac{(-1)^{n}}{n}: n \in \mathbb{N}\right\}$. Find inf S and sup S.
3. State monotone convergence theorem.
4. State alternating series test.
5. Prove that signum function sgn is not continuous at 0 .

PART - B
Answer any 8 questions from among the questions 6 to 16. These questions carry 2 marks each.
6. Find all $x \in \mathbb{R}$ that satisfy $|x+1|+|x-2|=7$.
7. State and prove triangle inequality.
8. If $x \in \mathbb{R}$, prove that there exists $n \in \mathbb{N}$ such that $x<n$.
9. State and prove squeeze theorem.
10. Let $\left(x_{n}\right)$ be a sequence of positive real numbers such that $L=\lim \frac{x_{n+1}}{x_{n}}$ exists. If $L<1$, prove that $\left(x_{n}\right)$ converges and $\lim \left(x_{n}\right)=0$.
11. Prove that a Cauchy sequence of real numbers is bounded.
12. Prove that the sequence $\left(1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}\right)$ is divergent.
13. Prove that $\sum_{n=0}^{\infty} r^{n}$ is convergent if $|r|<1$ and divergent if $|r| \geq 1$.
14. Prove that $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1}}$ is divergent.
15. Discuss the convergence of the series $\sum_{n=1}^{\infty} \frac{n}{n^{2}+1}$.
16. State and prove sequential criterion for continuity.
PART - C

Answer any 4 questions from among the questions 17 to 23 . These questions carry 4 marks each.
17. Let S be a subset of \mathbb{R} that contains atleast two points and has the property if $\mathrm{x}, \mathrm{y} \in \mathrm{S}$ and $\mathrm{x}<\mathrm{y}$. Prove that $[\mathrm{x}, \mathrm{y}] \subseteq \mathrm{S}$.
18. Let $\left(x_{n}\right)$ and $\left(y_{n}\right)$ be sequences of real numbers that converge to x and y respectively. Prove that $\left(x_{n} y_{n}\right)$ converges to $x y$.
19. Let $e_{n}=\left(1+\frac{1}{n}\right)^{n}$ for $n \in \mathbb{N}$. Prove that $\left(e_{n}\right)$ is convergent.
20. Show that $\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)}=\frac{1}{4}$.
21. State and prove Ratio test.
22. Prove that $\mathrm{g}(\mathrm{x})=\sin \frac{1}{\mathrm{x}}$ is continuous at every point $\mathrm{c} \neq 0$.
23. State and prove boundedness theorem.
PART - D

Answer any 2 questions from among the questions $\mathbf{2 4}$ to 27 . These questions carry 6 marks each.
24. a) State and prove nested interval property.
b) Prove that \mathbb{R} is not countable.
25. a) Prove that every contractive sequence is convergent.
b) Let $f_{1}=f_{2}=1$ and $f_{n+1}=f_{n}+f_{n-1}$. Define $x_{n}=\frac{f_{n}}{f_{n+1}}$. Prove that $\lim x_{n}=\frac{-1+\sqrt{5}}{2}$.
26. a) State and prove integral test.
b) Let a and b be two positive numbers. Prove that $\Sigma(a n+b)^{-p}$ converges if $p>1$ and diverges if $p \leq 1$.
27. State and prove maximum minimum theorem.

Reg. No. : \qquad
Name : \qquad

V Semester B.Sc. Degree (CBCSS - Supplementary) Examination, November 2022
 (2016-18 Admissions) CORE COURSE IN MATHEMATICS
 5B05 MAT : Real Analysis

Time : 3 Hours
Max. Marks : 48

SECTION - A

Answer all the questions, each question carries one mark.

1. State Supremum property of \mathbb{R}.
2. Prove that a sequence in \mathbb{E} can have atmost one limit.
3. Prove that $\sum_{n=1}^{x} \frac{1}{n^{2}+n}$ converges.
4. Let $I \subseteq \mathbb{R}$ be an interval and let $f: I \rightarrow \mathbb{R}$ be increasing on I. If $c \in I$, prove that f is continuous at c if and only if $j_{f}(c)=0$.

SECTION - B

Answer any eight questions, each question carries two marks.
5. Determine the set $B=\left\{x \in \mathbb{R}: x^{2}+x>2\right\}$.
6. State and prove Bernoulli's inequality.
7. Let $S=\left\{1-\frac{(-1)^{n}}{n}: n \in \mathbb{N}\right\}$. Find inf S and $\sup S$.
8. Use the definition of the limit of a sequence to prove that $\lim \left(\frac{2 n}{n+1}\right)=2$.
9. State and prove squeeze theorem.
10. Prove that $\sum_{n=0}^{x} r^{n}$ is convergent if $|r|<1$ and divergent if $|r| \geq 1$.
11. Establish the convergence or divergence of the series whose $n^{\text {th }}$ term is $\frac{n}{(n+1)(n+2)}$.
12. State and prove Dirichlet's test.
13. Prove that Dirichlet's function is discontinuous on \mathbb{R}.
14. State and prove Bolzano's intermediate value theorem.
SECTION - C

Answer any four questions, each question carries four marks.
15. State and prove Archimedean property.
16. State and prove nested interval property.
17. Let y_{n} be defined by $y_{1}=1, y_{n-1}=\frac{1}{4}\left(2 y_{n}+3\right)$ for $n \geq 1$. Prove that $\lim y_{n}=\frac{3}{2}$.
18. Prove that the p - series $\sum_{\mathrm{n}=1}^{\infty} \frac{1}{n^{p}}$ converges when $\mathrm{p}>1$.
19. State and prove integral test.
20. State and prove uniform continuity theorem.
SECTION - D

Answer any two questions, each question carries six marks.
21. Prove that there exists a positive real number x such that $x^{2}=2$.
22. Prove that every contractive sequence is a Cauchy sequence.
23. a) State and prove ratio test.
b) Establish the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{n!}{n^{n}}$.
24. State and prove location of roots theorem.

Reg. No. : \qquad
Name: \qquad

V Semester B.Sc. Degree CBCSS (OBE) Regular Examination, November 2021 (2019 Admn. Only) CORE COURSE IN MATHEMATICS 5B06 MAT : Real Analysis - I

Time : 3 Hours
Max. Marks : 48
PART - A

Answer any four questions. Each question carries 1 mark.

1. For $a, b \in \mathbb{R}$ if $a+b=0$, then prove that $b=-a$.
2. Find the supremum of the set $\left\{1-\frac{1}{n}: n \in \mathbb{N}\right\}$.
3. Show that $\lim _{n \rightarrow \infty} \frac{1}{n}=0$.
4. Give an example of a discontinuous function on \mathbb{R}.
5. Define sequential criterion for the continuity of a function f on \mathbb{R}.

PART - B
Answer any eight questions. Each question carries 2 marks.
6. State and prove Archimedean property.
7. Determine the set $B=\left\{x \in \mathbb{R}: x^{2}+x>2\right\}$.
8. Let $J_{n}=\left(0, \frac{1}{n}\right)$ for $n \in \mathbb{N}$, prove that $\bigcap_{n=1}^{\infty} J_{n}=\varnothing$.
9. Prove that a sequence in \mathbb{R} can have at most one limit.
10. Show that a convergent sequence of real numbers is bounded.
11. Prove that every convergent sequence is a Cauchy sequence.
P.T.O.
12. If the series $\sum x_{n}$ converges, then prove that $\lim _{n \rightarrow \infty} x_{n}=0$.
13. Check the convergence of the series $\sum_{n=1}^{x} \frac{1}{n^{2}+n}$.
14. Show that every absolutely convergent series is convergent.
15. Show that the function $f(x)=\frac{1}{x}$ is not bounded on the interval $(0, \infty)$.
16. If functions f, g are continuous at a point c , then prove that $\mathrm{f}+\mathrm{g}$ is also continuous at C .
($8 \times 2=16$)
PART - C
Answer any four questions. Each question carries 4 marks.
17. Prove that the set of real numbers is not countable.
18. State and prove Squeeze theorem.
19. State and prove Bolzano Weierstrass theorem.
20. Let $X=\left(x_{n}\right)$ and $Y=\left(y_{n}\right)$ that converges to x and y respectively, then prove that $X+Y$ converges to $x+y$.
21. Show that $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent.
22. If $X=\left(x_{n}\right)$ is a convergent monotone sequence and the series $\sum y_{n}$ is convergent, then prove that the series $\sum x_{n} y_{n}$ is convergent.
23. State and prove preservation of intervals theorem.
PART - D

Answer any two questions. Each question carries 6 marks.
24. Prove that there exists a positive real number x such that $x^{2}=2$.
25. State and prove Monotone convergence theorem.
26. State and prove D'Alembert's ratio test for series.
27. If $f:[a, b] \rightarrow \mathbb{R}$ is a continuous function, then prove that f has an absolute maximum and absolute minimum on $[\mathrm{a}, \mathrm{b}]$.
($2 \times 6=12$)

