Reg. No. : \qquad
Name: \qquad

V Semester B.Sc. Degree (CBCSS-Reg./Sup./Imp.) Examination, November-2019 (2014 Admn. Onwards) Core Course in Mathematics 5B08 MAT: Vector Calculus

SECTION - A

All the 4 questions are compulsory. They carry 1 mark each.

1. Find the divergence of $e^{x}(\cos y \vec{i}+\sin y \vec{j})$.
2. Express $\frac{\partial w}{\partial r}$ in terms of r and s if $w=x+y, x=r+s, y=r-s$.
3. What do you mean by a potential function for a vector field F.
4. Give a parametrization of the cone $z=\sqrt{x^{2}+y^{2}}, 0 \leq z \leq 1$.

SECTION - B

Answer any 8 questions among the questions 5 to 14. These questions carry 2 marks each.
($8 \times 2=16$)
5. Find the angle between the planes $3 x-6 y-2 z=15$ and $2 x+y-2 z=5$.
6. Show that $\vec{r}(t)=\cos t \vec{i}+\sqrt{5} \vec{j}+\sin t \vec{k}$ has constant length and is orthogonal to its derivative.
7. Define saddle point.

K19U 2257

8. Find the curl with respect to the right hand Cartesian coordinates of $y z \vec{i}+3 z x \vec{j}+z \vec{k}$.
9. Prove that for any twice continuously differentiable scalar function $f, \operatorname{curl}(\operatorname{grad} f)=\overrightarrow{0}$.
10. Find the local extreme values of the function $f(x, y)=x y-x^{2}-y^{2}-2 x-2 y+4$.
11. Show that $\vec{F}=(2 x-3) \vec{i}-z \vec{j}+\cos z \vec{k}$ is not conservative.
12. Evaluate $f(x, y, z)=3 x^{2}-2 y+z$ over the line segment C joining the origin to the point $(2,2,2)$.
13. Find the circulation of the field $F=(x-y) \vec{i}+x \vec{j}$ around the circle $\vec{r}(t)=(\cos t) \vec{i}+(\sin t) \vec{j}, 0 \leq t \leq 2 \pi$.
14. Use Green's theorem to find the outward flux for the field $F=(x-y) \vec{i}+(y-x) \vec{j}$ across the curve square bounded by $x=0, x=1, y=0, y=1$.

SECTION - C

Answer any 4 questions among the questions 15 to 20 . These questions carry 4 marks each.
($4 \times 4=16$)
15. Find and graph the osculating circle for a parabola $y=x^{2}$ at the origin.
16. Find the distance from $S(1,1,3)$ to the plane $3 x+2 y+6 z=6$.
17. Find the derivative of $f(x, y, z)=x^{3}-x y^{2}-z$ at $P_{0}(1,1,0)$ in the direction of $\vec{A}=2 \vec{i}-3 \vec{j}+6 \vec{k}$. Find the direction in which f increases most rapidly at P.
18. Use Taylor's formula to find a quadratic approximation of $f(x, y)=\cos x \cos y$ at the origin. Estimate the error in the approximation if $|x| \leq 0.1$ and $|y| \leq 0.1$.
19. Integrate $g(x, y, z)=x+y+z$ over the surface of the cube cut from the first octant by the planes $x=a, y=a, z=a$
20. Find the surface area of a sphere of radius a.

SECTION-D

Answer any 2 questions among the questions 21 to 24 . These questions carry 6 marks each.
($2 \times 6=12$)
21. Find:
a) Unit tangent vector T,
b) Unit normal vector N,
c) Curvature K,
d) Torsion T and binomial vector B for the space curve

$$
\vec{r}(t)=(3 \sin t) \vec{i}+3(\cos t) \vec{j}+4 \vec{k}
$$

22. Find the absolute maximum and minimum values of $f(x, y)=2+2 x+2 y-x^{2}-y^{2}$ on the triangular plate bounded by the lines $x=0, y=0, y=9-x$.
23. a) State both forms of Green's theorem.
b) Verify the circulation -curl form of Green's theorem for the field $\vec{F}(x, y)=(x-y) \vec{i}+x \vec{j}$ and the region R bounded by the unit circle .
$C: \vec{r}(t)=\cos t \vec{i}+\sin t \vec{j}, 0 \leq t \leq 2 \pi$
24. a) State Stoke's theorem.
b) Use Stoke's theorem to evaluate $\int_{c} \vec{F} \cdot d \vec{d}$, if $F=x z \vec{i}+x y \vec{j}+3 x z \vec{k} C$ is the boundary of the portion of the plane $2 x+y+z=2$ in the first octant, traversed counter clock wise.

K22U 2324
Reg. No.: \qquad
Name: \qquad

V Semester B.Sc. Degree (CBCSS - OBE - Regular/Supplementary/ Improvement) Examination, November 2022
 (2019 Admission Onwards) CORE COURSE IN MATHEMATICS
 5B09MAT : Vector Calculus

Time : 3 Hours

Max. Marks : 48
PART - A
(Short Answer Questions)
Answer any four questions from this Part. Each question carries 1 mark.

1. Find parametric equations for the line through $(-2,0,4)$ parallel to $v=2 i+4 j-2 k$.
2. Find the distance from $(1,1,3)$ to the plane $3 x+2 y+6 z=6$.
3. Find the gradient of the function $f(x, y)=x^{2}+y^{2}$ at the point $(1,-1)$.
4. Integrate $f(x, y, z)=x-3 y^{2}+z$ over the line segment C joining the origin to the point (1, 1, 1).
5. One of the parametrization of the sphere $x^{2}+y^{2}+z^{2}=1$ is
PART - B
(Short Essay Questions)
Answer any eight questions. Each question carries 2 marks.
6. Find the curvature of the circle whose parametrization is given by $r(t)=(a \cos t) i+(a \sin t) j$.
7. Show that a moving particle will move in a straight line if the normal component of its acceleration is zero.
8. A glider is soaring upward along the helix $r(t)=(\cos t) i+(\sin t) j+t k$. How long is the glider's path from $t=0$ to $t=2 \pi$?
9. Find the directions in which $f(x, y)=\frac{x^{2}}{2}+\frac{y^{2}}{2}$ decreases most rapidly at $(1,1)$.
10. Suppose that a cylindrical can is designed to have a radius of 1 in . and a height of 5 in ., but that the radius and height are off by the amounts $\mathrm{dr}=+0.03$ and $\mathrm{dh}=-0.1$. Estimate the resulting absolute change in the volume of the can.
11. Find the critical points of the function $f(x, y)=x^{2}+y^{2}-4 y+9$.
12. Find the work done by the conservative field $F=y z i+x z j+x y k$, where $f(x, y, z)=x y z$, along any smooth curve C joining the point $(-1,3,9)$ to $(1,6,-4)$.
13. Is the vector field $F=\frac{-y}{x^{2}+y^{2}} i+\frac{x}{x^{2}+y^{2}} j+0 k$ is conservative? Justify your answer.
14. Find the divergence of the vector field $F=\left(y^{2}-x^{2}\right) i+\left(x^{2}+y^{2}\right) j$.
15. Integrate $G(x, y, z)=x^{2}$ over the cone $z=\sqrt{x^{2}+y^{2}}, 0 \leq z \leq 1$.
16. Find the curl of $F=x i+y j+z k$.
PART - C

(Essay Questions)

Answer any four questions. Each question carries 4 marks.
17. Find the unit tangent vector of the curve $r(t)=(1+3 \cos t) i+(3 \sin t) j+t^{2} k$.
18. Find the angle between the planes $3 x-6 y-2 z=15$ and $2 x+y-2 z=5$.
19. Find the derivative of $f(x, y)=x e^{y}+\cos (x y)$ at the point $(2,0)$ in the direction of $v=3 i-4 j$.
20. Find $\frac{\partial w}{\partial x}$ if $w=x^{2}+y^{2}+z^{2}$ and $z^{3}-x y+y z+y^{3}=1$.
21. Find the linearization $L(x, y, z)$ of $f(x, y, z)=x^{2}-x y+3 \sin z$ at the point (2, 1, 0).
22. Verify Green's Theorem for the vector field $F(x, y)=(x-y) i+x j$ and the region R bounded by the unit circle $C: r(t)=(\cos t) i+(\sin t) j, 0 \leq t \leq 2 \pi$.
23. Integrate $G(x, y, z)=x y z$ over the surface of the cube cut from the first octant by the planes $x=1, y=1$, and $z=1$.
PART - D

(Long Essay Questions)

Answer any two questions. Each question carries 6 marks.
24. Find the curvature and torsion for the helix $r(t)=(a \cos t) i+(a \sin t) j+b t k$, $a, b>0, a^{2}+b^{2} \neq 0$.
25. Find the local extreme values of $f(x, y)=3 y^{2}-2 y^{3}-3 x^{2}+6 x y$.
26. Show that $y d x+x d y+4 d z$ is exact and evaluate the integral $\int y d x+x d y+4 d z$ over any path from $(1,1,1)$ to $(2,3,-1)$.
27. Find the surface area of the cone $z=\sqrt{x^{2}+y^{2}}, 0 \leq z \leq 1$.

Reg. No. : \qquad
Name : \qquad

V Semester B.Sc. Degree CBCSS (OBE) Regular Examination, November 2021
 (2019 Admn. Only) CORE COURSE IN MATHEMATICS 5B09MAT : Vector Calculus

Time : 3 Hours
Max. Marks : 48

> PART - A

Short Answer
(Answer any four)

1. Find the parametric equations for the line through $(3,1,2)$ and $(2,1,6)$.
2. State and prove chain rule for vector functions.
3. Find the directional derivative of $F(x, y, z)=x y^{2}-4 x^{2} y+z^{2}$ at $(1,-1,2)$ in the direction of $6 i+2 j+3 k$.
4. Evaluate $\oint_{C} x d x$ where C is the circle $x=\operatorname{cost}, y=$ sint, $0 \leq t \leq 2 \pi$.
5. If $F=\left(x^{2} y^{3}-z^{4}\right) i+4 x^{5} y^{2} z j-y^{4} z^{6} k$ find curl F.

> PART - B
> Short Essay
> (Answer any eight)
6. A helicopter is to fly directly from a helipad at the origin in the direction of the point $(1,1,1)$ at a speed of 60 ft sec . What is the position of the helicopter after 10 sec ?
7. A projectile is launched from ground level with an initial speed $v_{0}=768 \mathrm{ft} / \mathrm{s}$. at an angle $\theta=30^{\circ}$. What is the range and maximum height attained by the projectile?
P.T.O.
8. Show that if $u=u_{1} i+u_{2} j+u_{3} k$ is a unit vector, then the arc length parameter along the line $r(t)=\left(x_{0}+t u_{1}\right) i+\left(y_{0}+t u_{2}\right) j+\left(z_{0}+t u_{3}\right) k$ from the point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ where $t=0$ is t itself.
9. Find the linearization of $f(x, y)=x^{2}-x y+x^{5} y^{2}+y^{4}$ at the point $(2,1)$.
10. Find the local extreme values of $f(x, y)=y^{2}-x^{2}$.
11. Find the least squares line for the points $(0,1),(1,3),(2,2),(3,4),(4,5)$.
12. Prove the orthogonal gradient theorem.
13. A coil spring lies along the helix $r(t)=2 \operatorname{cost} i+2 \operatorname{sint} j+t k, 0 \leq t \leq 2 \pi$ with constant density δ. Find the spring's mass and center of mass, and its moment of inertia and radius of gyration about the z-axis.
14. Find work done by force $F=y z i+x z j+x y k$ acting along the curve given by $r(t)=t^{3} i+t^{2} j+t k$ from $t=1$ to $t=3$.
15. Prove closed property of conservative fields.
16. Show that $y d x+x d y+4 d z$ is exact and evaluate the integral $\int y d x+x d y+4 d z$ over the line segment from $(1,1,1)$ to $(2,3,-1)$.

PART-C

Essay

(Answer any four)
17. The position of a moving particle is given by $r(t)=2 \operatorname{cost} i+2 \operatorname{sint} j+3 t k$. Find the tangential, normal and binormal vectors. Also determine the curvature.
18. A delivery company accepts only rectangular boxes the sum of whose length and girth (perimeter of a cross-section) does not exceed 108 in . Find the dimensions of an acceptable box of largest volume.
19. Find the maximum and minimum values of the function $f(x, y)=3 x-y$ on the circle $x^{2}+y^{2}=4$ using Lagrange multiplier's.
20. Given $F(x, y)=\left(y^{2}-6 x y+6\right) i+\left(2 x y-3 x^{2}-2 y\right) j$. Determine a potential function for F.
21. How are the constants a, b and c related if the following differential form is exact ? $\left(a y^{2}+2 c z x\right) d x+y(b x+c z) d y+\left(a y^{2}+c z^{2}\right) d z$.
22. Calculate the outward flux of the field $F(x, y)=x i+3 y^{2} j$ across the square bounded by the lines $x= \pm 2$ and $y= \pm 2$.
23. Find the surface area of sphere of radius a.

$$
\begin{gathered}
\text { PART - D } \\
\text { Long Essay } \\
\text { (Answer any two) }
\end{gathered}
$$

24. a) Show that the curvature of a circle with radius a is $1 / a$.
b) Find and graph the osculating circle of the parabola $y=x^{2}$ at the origin.
25. a) State Taylor's formula for $f(x, y)$ at the origin and at point (a, b).
b) Find a quadratic approximation to $f(x, y)=\sin x$ siny near the origin. How accurate is the approximation if $|\mathrm{x}| \leq 0.2$ and $|\mathrm{y}| \leq 0.4$?
26. a) Find the flux and circulation of the field $F(x, y)=(x-y) i+x j$ around the circle $x^{2}+y^{2}=1$.
b) Evaluate $\oint_{c}\left(x^{2}-y^{2}\right) d x+(2 y-x)$ dy where C consists of the boundary of the region in the first quadrant that is bounded by the graphs of $y=x^{2}$ and $y=x^{3}$.
27. a) Find the area of the cap cut from the hemisphere $x^{2}+y^{2}+z^{2}=2, z \geq 0$ by the cylinder $x^{2}+y^{2}=1$.
b) Evaluate $\oint_{C} z d x+x d y+y d z$ where C is the trace of the cylinder $\mathrm{x}^{2}+\mathrm{y}^{2}=1$ in the plane $\mathrm{y}+\mathrm{z}=2$. Orient C counter clockwise as viewed from above.

Reg. No. : \qquad
Name : \qquad
V Semester B.Sc. Degree (CBCSS - Sup./Imp.) Examination, November 2021 (2015 - '18 Admns) CORE COURSE IN MATHEMATICS

5B08 MAT : Vector Calculus
Time: 3 Hours
Max. Marks : 48

SECTION - A

All the four questions are compulsory. Each carries 1 mark.

1. Find the gradient of the function $f(x, y)=e^{\frac{y}{x}}$ at $(1,1)$.
2. Find the divergence of $F(x, y)=12 x^{2} y i-3\left(x^{3}-y^{2}\right) j$ at $(1,1)$.
3. Define the line integral of a function $f(x, y, z)$ over a smooth curve C.
4. Find a vector equation of the curve $y=9-x^{2}, y \geq 0$, in the plane.

SECTION - B

Answer any 8 questions from questions 5 to 14. Each carries 2 marks.
5. Write the vector equation of a line in the plane passing through $(1,1)$ and making an angle $\frac{\pi}{6}$ with the positive X axis.
6. Find the distance travelled by a particle when it moves along the curve $r(t)=3 t^{2} i-\sqrt{2} t^{2} j+5 t^{2} k, 0 \leq t \leq 3$.
7. If $\omega=x^{2}+y^{2}+z^{2}$ and $z^{3}+x y+y z+y^{3}=0$, find $\frac{\partial \omega}{\partial x}$ at $(x, y, z)=(2,1,0)$ treating x and y as independent variables.
8. Find the equation to the tangent plane to the surface $3 x y^{2}=4 y z+2$ at $(2,1,1)$.
9. If $F(x, y)=C$, show that $\frac{d y}{d x}=-\frac{\left(\frac{\partial F}{\partial x}\right)}{\left(\frac{\partial F}{\partial y}\right)}$.
10. Find the linear approximation $L(x, y)$ of the function $f(x, y)=(2 x-y)^{2}$ at $(1,1)$.
11. Evaluate $\int_{C}(x+y)$ ds where C is given by $r(t)=t i+(1-3 t) j$ from $(0,1)$ to (2, -5).
12. If the force $F=3 x i+4 y j+3 k$ is acting on a particle moving it along the curve C given by $r(t)=t i+(1-t) j+t k$ from $(0,1,0)$ to $(1,0,1)$, find the work done by the force.
13. State the Gauss Divergence theorem.
14. Integrate $F(x, y, z)=x^{2}$ over the surface of the cone $z=\sqrt{x^{2}+y^{2}}$, $0 \leq z \leq 1$.

SECTION - C

Answer any 4 questions from questions 15 to 20 . Each carries 4 marks.
15. Show that $\frac{d}{d t}(U \times V)=\frac{d}{d t}(U) \times V+U \times \frac{d}{d t}(V)$, where U, V are functions of
tinto \mathbb{R}^{2}.
16. Find the binormal vector to the curve $r(t)=\cos t i+\sin t j-k$ at $t=\frac{\pi}{4}$.
17. Suppose $D_{U} f(1,2)=10$ and $D_{v} f(1,2)=6$ where $U=\frac{3}{5} i-\frac{4}{5} j$ and $V=\frac{4}{5} i+\frac{3}{5} j$. Find $\frac{\partial f}{\partial x}(1,2)$ and $\frac{\partial f}{\partial y}(1,2)$.
18. Use the Taylor's formula for $f(x, y)=\cos (y+x)$ at the origin to find the quadratic approximation of f. Hence find approximate value of $f(0.1,0.2)$.
19. Find the scalar potential function of
$F(x, y, z)=\left(y^{2} \cos x+z^{3}\right) i+(2 y \sin x-4) j+3 x z^{2} k$.
20. Find the area of the surface cut from the bottom of the paraboloid $x^{2}+y^{2}-z=0$ by the plane $z=4$.

SECTION - D

Answer any 2 questions from questions 21 to 24. Each question carries 6 marks.
21. If the equation of a curve is given by $r(t)=a \operatorname{cost} i+a \sin t j+b t k$, find the unit tangent vector, unit normal vector and the curvature of the curve.
22. Using Lagrange's multiplier method, find the possible extreme points of $U(x, y)=x^{2}+y^{2}$ subject to the constraint $x^{2}+y^{2}+2 x-2 y+1=0$.
23. Verify Green's theorem for $\int_{C}\left(x y+y^{2}\right) d x+x^{2} d y$ where C is the curve enclosing the region bounded by the parabola $y=x^{2}$ and the line $y=x$.
24. Verify Stoke's theorem for the vector field $F(x, y, z)=(2 x-y) i-y z^{2} j-y^{2} z k$, taking the surface to be the upper half of the sphere $x^{2}+y^{2}+z^{2}=1$ and the curve to be its boundary on the XY-plane.

Reg. No. : \qquad
Name: \qquad

V Semester B.Sc. Degree (CBCSS - Reg./Sup./Imp.)
 Examination, November 2020
 (2014 Admn. Onwards) CORE COURSE IN MATHEMATICS
 5B08 MAT - Vector Calculus

Time: 3 Hours
Max. Marks : 48

SECTION - A

All the four questions are compulsory. Each question carries 1 mark:

1. Find the gradient of the function $f(x, y)=\tan ^{-1}\left(\frac{y}{x}\right)$ at $(1,1)$.
2. If $w=\sin (x+2 z)$ and $x^{3}+z^{3}=3$, find $\frac{d w}{d x}$ using chain rule.
3. Evaluate $\int_{C} 9 x^{2} y d x$ where C is given by $x=t^{2}, y=t^{3}, 0 \leq t \leq 2$.
4. Write the formula for finding the surface area of a surface S given by $F(x, y, z)=C$, defined over the planar region R.

SECTION - B

Answer any 8 questions from questions 5 to 14. Each question carries 2 marks :
5. Write the vector equation of a line in a plane passing through $(1,2)$ and making an angle $\frac{\pi}{3}$ with the positive X -axis.
6. Find the length of the curve $r(t)=3 \operatorname{cost} i-3 \operatorname{sint} j-4 t k, 1 \leq t \leq 3$.
7. Find the directional derivative of $f(x, y)=e^{2 x y}$ at $(-2,0)$ in the direction of $i+j$.
8. If $w=x^{2}+y^{2}+z^{2}$ and $z^{3}+x y z+y z^{2}=0$, find $\frac{\partial w}{\partial x}$ at $(x, y, z)=(1,1,0)$ treating x and y as independent variables.
9. Find the linear approximation $L(x, y)$ of the function $f(x, y)=e^{2 y+x}$ at $(2,3)$.
10. If $\phi(x, y)=3 \sqrt{x^{2}+y^{2}}$, find $\operatorname{div}(\operatorname{grad}(\phi))$.
11. Find the flux of $F=(x-y) i+x j$ across the circle $x^{2}+y^{2}=1$ in the $X Y$-plane.
12. If the force $F=4 x i+4 y j$ is acting on a particle moving it along the curve $r(t)=t i+(1+2 t) j$ from $(1,3)$ to $(3,7)$, find the work done by the force.
13. Find a parametrization of the surface of the paraboloid $z=16-x^{2}-y^{2}$, $z \geq 0$.
14. State the Gauss divergence theorem.

SECTION - C

Answer any 4 questions from questions 15 to 20. Each question carries 4 marks :
15. Find the equation of the plane through the points $A(1,0,2), B(1,1,1)$, $C(1,2,3)$.
16. Show that $\frac{d}{d t}(U . V)=\frac{d}{d t}(U) \cdot V+U \cdot \frac{d}{d t}(V)$, where U, V are functions of t into \mathbb{R}^{2}.
17. Use the Taylor's formula for $f(x, y)=e^{x} \cos y$ at the origin to find the quadratic approximation of f. Hence find approximate value of $f(0.1,0.2)$.
18. Find Curl $(F \times G)$ at $(1,2,0)$ where $F(x, y, z)=3 x^{2} i+2 x y j+2 y z k$ and $G(x, y, z)=4 y z i+y^{2} j+x y z k$.
19. Using Green's theorem, find the area enclosed by the circle $x^{2}+y^{2}=4$.
20. Evaluate the surface integral $\iint_{\sigma} y^{2} z^{2} d S$, where σ is the part of the cone $z=\sqrt{x^{2}+y^{2}}$ that lies between the planes $z=1$ and $z=2$.

SECTION - D

Answer any 2 questions from questions 21 to 24. Each question carries 6 marks :
21. Find the unit tangent vector, unit normal vector and the binormal vector at $t=0$ for the curve $r(t)=2 \operatorname{cost} i+2 \sin t j+4 t k$.
22. Find the absolute maximum and minimum values of the function $f(x, y)=3 x y-6 x-3 y+7$ on the closed triangular region R with vertices $(0,0),(3,0)$ and $(0,5)$.
23. Check whether the vector field $F=\left(6 x y+z^{3}\right) i+\left(3 x^{2}-z\right) j+\left(3 x z^{2}-y\right) k$ is conservative or not. If conservative, find its scalar potential function.
24. Verify Stoke's theorem for the vector field $F(x, y, z)=2 z i+3 x j+5 y k$, taking the surface to be the portion of the paraboloid $z=4-x^{2}-y^{2}$ for $z \geq 0$, with upward orientation, and the curve to be the positively oriented circle of intersection of the paraboloid with the XY-plane.

K19U 2258

Reg. No. : \qquad
\qquad
V Semester B.Sc. Degree (CBCSS- Sup./Imp.) Examination, November-2019
(2014-2016 Admissions)
Core Course in Mathematics
5B 09 MAT: GRAPH THEORY

Time : 3 Hours
Max. Marks : 48

SECTION - A

All the 4 questions are compulsory. They carry 1 mark each.

1. Define self-complementary graphs.
2. State Cayley's formula.
3. What is meant by covering of a graph?
4. Define digraph.

SECTION - B

Answer any 8 questions among the questions 5 to 14 . These questions carry 2 marks each.
5. Prove that the sum of the degrees of the vertices of a graph is equal to twice the number of edges.
6. Let G be a simple graph. Prove that if G is disconnected then G^{c} is connected.
7. Let G be a connected graph and $e=x y$ be a cut edge of G. Prove that e does not belong to any cycle of G.
8. Determine the connectivity and edge-connectivity of the Petersen graph.
9. Prove that a tree with at least two vertices contains at least two pendant vertices.
10. Define branch, weight, centroid vertex of a vertex of a tree.
11. For any graph G with n vertices, prove $\alpha+\beta=n$.
12. Define Hamiltonian graphs and traceable graphs.
13. Define a symmetric digraph with an example.
14. Define in degree and out degree of a digraph with an example.

SECTION - C

Answer any 4 questions among the questions 15 to 20 . These questions carry 4 marks each.
($4 \times 4=16$)
15. Explain with examples any four operations of graphs.
16. Prove that if G is a line graph, then $K_{1,3}$ is a forbidden subgraph of G.
17. Prove that a connected graph with at least two vertices contains at least two vertices that are not cut vertices.
18. Prove that every tree has a center consisting of either a single vertex or two adjacent vertices.
19. Determine the values of the parameters $\alpha, \beta, \alpha^{\prime}, \beta^{\prime}$ for K_{n}.
20. Prove that a simple graph G with $n \geq 3$, if $d(u)+d(v) \geq n-1$ for every pair of non adjacent vertices u and v of G, then G is traceable.

SECTION - D

Answer any 2 questions among the questions 21 to 24 . These questions carry 6 marks each.
($2 \times 6=12$)
21. a) Define line graphs
b) Let G_{1} and G_{2} be simple graphs. Prove that if G_{1} and G_{2} are isomorphic then $L\left(G_{1}\right)$ and $L\left(G_{2}\right)$ are isomorphic.
c) Does the converse hold? Justify.
22. a) Prove that for any loopless connected graph $k(G) \leq \lambda(G) \leq \delta(G)$.
b) Determine $k(P)$ and $\lambda(P)$ for the Petersen graph P .
23. For any non-trivial connected graph G, prove the following statements are equivalent.
i) G is Eulerian.
ii) The degree of each vertex of G is an even positive integer.
iii) G is an edge-disjoint union of cycles.
24. a) Define tournaments and display all tournaments on three vertices.
(2)
b) Prove that every tournament contains a directed Hamilton path

Reg. No. : \qquad
Name : \qquad

V Semester B.Sc. Degree (CBCSS - Sup.) Examination, November 2021 (2015-16 Admns)
 Core Course in Mathematics 5B09MAT : GRAPH THEORY

Time : 3 Hours
Max. Marks : 48

SECTION - A

All the first $\mathbf{4}$ questions are compulsory. They carry 1 mark each.

1. Define an edge cut of a graph G.
2. What is meant by branch of a vertex u of a tree T ?
3. What is clique?
4. Define covering of a graph.
SECTION - B

Answer any 8 questions from among the questions 5 to 14. These questions carry 2 marks each.
5. Prove that, if G is a simple graph with $\delta \geq \frac{n-1}{2}$, then G is connected.
6. Explain intersection and join of graphs with examples.
7. An edge e is a cut edge of a connected graph G, if and only if, there exists vertices u and v such that e belongs to every $u-v$ path in G.
8. Prove that if $m(G)=n(G)$ for a simple connected graph G, then G contains exactly one cycle.
9. If a graph G with at least three vertices is 2-connected, then show that any two vertices of G lie on a common cycle.
10. Prove that a tree with at least two vertices contains at least two pendant vertices.
11. Define matching. Distinguish between saturated and unsaturated set of vertices by a matching.
12. Show that a simple graph is a tree if and only if, any two vertices are connected by a unique path.
13. Explain the terms strict and symmetric digraphs with examples.
14. By sketching a wheel W_{5}, find a maximal covering and a minimal covering.
SECTION - C

Answer any 4 questions from among the questions 15 to 20 . These questions carry 4 marks each.
15. Show that a line graph of a simple graph G is a path if and only if, G is a path.
16. Prove that a connected graph G with at least two vertices contains at least two vertices that are not cut vertices.
17. Prove that if e is not a loop of G, then $\tau(G)=\tau(G-e)+\tau(G . e)$.
18. For any graph G, show that $\alpha+\beta=n$.
19. Write a short note on Tournament.
20. Prove that for a simple connected graph $G, L(G)$ is isomorphic to G if and only if G is a cycle.

SECTION - D

Answer any 2 questions from among the questions 21 to 24 . These questions carry 6 marks each.
21. Prove that every tournament contains a directed Hamilton path.
22. Show that for a connected graph G with at least two vertices is a tree if and only if, its degree sequence $\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ satisfies the condition: $\sum_{i=1}^{n} d_{i}=2(n-1)$ with $d_{i}>0$ for each i.
23. Prove that every vertex of a disconnected tournament with $n \geq 3$ is contained in a directed k-cycle, $3 \leq k \leq n$.
24. For a connected graph G, show that the following are equivalent.
i) G is Eulerian.
ii) The degree of each vertex of G is an even positive integer.
iii) G is an edge disjoint union of cycles.

Reg. No. : \qquad
Name : \qquad

V Semester B.Sc. Degree (CBCSS-Sup.) Examination, November 2020 (2014-16 Admns.) CORE COURSE IN MATHEMATICS 5B09MAT : Graph Theory

Time: 3 Hours
Max. Marks : 48

SECTION - A

All the first 4 questions are compulsory. They carry 1 mark each.

1. Define a vertex cut of a graph G.
2. What is meant by weight of a vertex u of a tree T ?
3. When will you say that a graph is Eulerian ?
4. Define vertex independent of graphs.

SECTION - B

Answer any 8 questions from among the questions 5 to 14 . These questions carry 2 marks each.
5. Show that the sum of the degrees of the vertices of a graph is equal to twice the number of its vertices.
6. Distinguish between Cartesian product and normal product of graphs.
7. An edge e is a cut edge of a connected graph G, if and only if, e does not belong to any cycle of G. Prove it.
8. Show that a simple graph is a tree if and only if, any two vertices are connected by a unique path.
9. If $\delta(G) \geq 2$, for a graph G, then show that G contains a cycle.
10. If any two vertices of a graph G with at least three vertices, lie on a common cycle, then show that G is 2 -connected.
P.T.O.
11. Prove that a subset S of the vertex set V of a graph is independent if $V-S$ is a covering of G.
12. Distinguish between Eulerian and non Eulerian graphs with example.
13. Show that if a connected graph G is Eulerian, then the degree of each vertex is an even positive integer.
14. What is meant by orientation of a digraph ? Explain with an example.
SECTION - C

Answer any 4 questions from among the questions 15 to 20 . These questions carry 4 marks each.
15. Prove that the number of edges of a simple graph with ω components cannot exceed $\frac{(n-\omega)(n-\omega+1)}{2}$.
16. Show that the line graph of a simple graph G is a path if and if, G is a path.
17. Prove that a connected simple graph G is 3-edge connected if and only if, every edge of G is the intersection of the edge set of two cycles of G .
18. Show that every $2 k$-edge connected graph ($k \geq 1$) contains k pairwise edge disjoint spanning tree.
19. Discuss about vertex independence and edge independence with suitable examples.
20. Define degree of a vertex of a graph. Explain indegree and outdegree of a digraph with example.
SECTION - D

Answer any 2 questions from among the questions 21 to 24 . These questions carry 6 marks each.
21. Prove that if two simple graphs G_{1} and G_{2} are isomorphic, then $L\left(G_{1}\right)$ and $L\left(G_{2}\right)$ are isomorphic.
22. Prove that the number of edges of a connected graph with n vertices is $n-1$ if and only if, it is a tree.
23. Show that for a graph G with $\delta>0, \alpha^{\prime}+\beta^{\prime}=n$.
24. Prove that every tournament contains a directed Hamilton path.

Reg. No. :
Name:

V Semester B.Sc. Degree (CBCSS-Reg)
 Examination, November - 2019
 (2017 Admn. Only)
 CORE COURSE IN MATHEMATICS
 5B09 MAT- GRAPH THEORY

Time: 3 Hours
iviax. Marks : 48

SECTION - A

Answer all the questions. Each question carries 1 mark.

1. What is the minimum number of edges of a simple connected graph on n vertices?
2. Define an Eulerian graph.
3. Draw $K_{2,3}$ and write the number of edges in that graph.
4. State Redei's theorem.

SECTION - B

Answer any Eight Questions. Each Question carries 2 marks ($8 \times 2=16$)
5. Define Clique of a graph. Give one example.
6. Define a graphical sequence. Can ($1,1,1,2,2$) be a graphical sequence? Give reason.
7. Give example of a 3 -regular graph. Is it possible to draw a 3-regular graph on 5 vertices ? Give reason.
8. Define Complement of a graph.

Give example of a simple graph and its complement where both are connected.
9. If the edge $\mathrm{e}=x-y$ of a connected graph G is a cut edge, then prove that e does not belong to any cycle of G.
10. In a tree, prove that any two distinct vertices are connected by a unique path.
11. Prove that a connected graph with n vertices and $n-1$ edges is a tree.
12. Define a maximal independent set of vertices of a graph.
13. If a graph is Eulerian, prove that the degree of each vertex of G is an even positive integer.
14. Give example of a graph that is Hamiltonian.

SECTION - C

Answer any Four Questions. Each Question carries 4 marks.($4 \times 4=16$)
15. Prove that in any group of n persons, $(n \geq 2)$ there are at least two with the same number of friends.
16. if a graph is bipartite, then prove that it contains no odd cycles.
17. Define the union, intersection and join of two graphs. Give one example for each.
18. A connected graph G with at least two vertices contains at least two vertices that are not cut vertices.
19. Prove that every connected graph contains a spanning tree.

20 In a graph G if each edge e belongs to an odd number of cycles of G, then prove that G is Eulerian.

SECTION - D

Answer any Two Questions. Each Question carries 6 marks. ($2 \times 6=2$)
21. In a simple graph G with n vertices, if $\delta \geq \frac{n-1}{2}$, then prove that G is connected. What happens if the condition 'simple' is dropped?
22. Prove that a vertex v of a connected graph G with at least three vertices is a cut vertex of G iff there exist vertices u and w of G distinct from v such that v is in every $u-w$ path in G.
23. If G is a connected labelled graph, what is the meaning of $\tau(G)$?

If e is not a loop of a connected graph G, then prove that $\tau(G)=\tau(G-e)+\tau(G o e)$
24. For a non-trivial connected graph G, prove that the degree of each vertex of G is an even positive integer if and only if G is an edge-disjoint union of cycles.

Reg. No. : \qquad
Name: \qquad

V Semester B.Sc. Degree (CBCSS - Reg./Sup./Imp.)
 Examination, November 2020
 (2017 Admn. Onwards)
 CORE COURSE IN MATHEMATICS
 5B09 MAT : Graph Theory

Time : 3 Hours
Total Marks : 48

PART - A

Answer all 4 questions:

1. Draw a graph on 4 vertices having a cut vertex. Mark the cut vertices.
2. Sketch 2 isomorphic trees on 4 vertices.
3. Plot a strict digraph on 4 vertices.
4. Sketch a symmetric digraph on 4 vertices.
PART - B

Answer any 8 questions:
5. Define a complete graph. Draw the graph K_{5}.
6. Picturise all non isomorphic graphs on 3 vertices.
7. If $e=x y$ is a cut edge of a connected graph G, prove that there exist vertices u and v such that e belongs to every $u-v$ path in G.
8. Find the cut edges and the cut vertices of the graph given below.

9. Draw a 2 regular graph on 4 vertices and draw one spanning graph of the same.
10. For a connected graph G, define the terms diameter and eccentricity.
11. Find a covering and a minimal covering for the wheel graph W_{5}.
12. Give an example of an Eulerian graph. Explain why it is Eulerian.
13. Explain the terms Directed Walk and Directed Cycle.
14. Define the term tournament. Sketch a tournament on 3 vertices.
PART - C

Answer any 4 questions :
($4 \times 4=16$)
15. Plot all non isomorphic graphs on 4 vertices.
16. If a simple graph G is not connected, prove that G^{c} is connected.
17. Prove that a graph G with at least 3 vertices is 2 -connected if and only if any two vertices of G lie on a common cycle.
18. Prove that a graph is a tree if and only if any two distinct vertices are connected by a unique path.
19. For a graph G on n vertices, define the terms independence number α and the covering number β of G. Further show that $\alpha+\beta=n$.
20. Describe Königsberg bridge problem. Represent the problem graphically. Does the problem has a solution? Explain.
PART - D

Answer any 2 questions :
(2×6=12)
21. Show that a graph G is bipartite if and only if it contains no odd cycle.
22. Prove that a graph G with at least three vertices is 2 -connected if and only if any two vertices of G are connected by at least 2 internally disjoint paths.
23. Establish the claim : A graph is Eulerian if and only if it has odd number of cycle decompositions.
24. Prove that every tournament contains a directed Hamiltonian path.

