Reg. No. :
Name: \qquad

V Semester B.Sc. Degree (CBCSS-Reg./Sup./Imp.)
 Examination, November-2019
 (2014 Admn. Onwards)
 Core Course in Mathematics

5B 07 MAT: Differential Equations, Laplace Transform and Fourier series

Time: 3 Hours
Max. Marks : 48

SECTION - A

All the 4 questions are compulsory. They carry 1 mark each.
$(4 \times 1=4)$

1. Solve the differential equation $y^{\prime \prime}=x^{-4}$.
2. Evaluate $(D-2)(D+1) e^{2 x}$
3. Find the Laplace transform of $e^{t} \cosh 3 t$
4. Show that if $f(x)$ and $g(x)$ have period p, then $h=a f+b g$, where a and b are constants, has period p.

SECTION - B

Answer any 8 questions among the questions 5 to 14. These questions carry 2 marks each.
5. Show that $2 x y d x+x^{2} d y=0$ is exact and hence solve it.
6. Solve $y^{\prime}-y=e^{2 x}$.
7. Solve the boundary value problem $y^{\prime \prime}+y=0, y(0)=3, y(\pi)=-3$.
8. Define the Wronskian of two solutions y_{1}, y_{2} of second order linear homogenous equation and find the Wronskian of e^{x} and $x e^{x}$.
9. Solve the non homogenous equation $y^{\prime \prime}+4 y=8 x^{2}$.
10. Find a basis of solutions for $x^{2} y^{\prime \prime}-x y+y=0$, for positive x.
11. Define the unit step function and derive its Laplace transform.
12. State the convolution theorem and find the convolution of 1 and t.
13. Find the Fourier series of $f(x)=x+\pi$ if $-\pi<x<\pi$ and $f(x+2 \pi)=f(x)$.
14. State the Fourier convergence theorem.

SECTION - C

Answer any 4 questions among the questions 15 to 20. These questions carry 4 marks each.
($4 \times 4=16$)
15. Give an example of an initial value problem, which has more than one solution.
16. State and prove the superposition principle for the homogenous linear system.
17. Solve $y^{\prime \prime}+10 y^{\prime}+25 y=e^{-5 x}$.
18. Factor $p(D)=D^{2}+D-6$ and solve $p(D)[y]=0$.
19. Find the inverse Laplace transform of $F(s)=\frac{2}{s^{2}}-\frac{2 e^{-2 s}}{s^{2}}-\frac{4 e^{-2 s}}{s}+\frac{s e^{-\pi s}}{s^{2}+1}$.
20. Find the Fourier series of $f(x)=|x|,-2<x<2, f(x+4)=f(x)$.

SECTION - D

Answer any 2 questions among the questions 21 to 24 . These questions carry 6 marks each.
($2 \times 6=12$)
21. Find the orthogonal trajectories of $y=c x^{2}$, where c is arbitrary.
22. Solve the differential equation $y^{\prime \prime}+y=\sec x$.
23. Find the solution of $y^{\prime \prime}+2 y^{\prime}+2 y=5 u(t-2 \pi) \sin t, y(0)=1, y^{\prime}(0)=0$.
24. Find the Fourier series of $f(x)=\frac{x^{2}}{2},-\pi<x<\pi, f(x+2 \pi)=f(x)$. Hence show that $1-\frac{1}{4}+\frac{1}{9}-\frac{1}{16}+\ldots \ldots=\frac{\pi^{2}}{12}$ and $1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\ldots \ldots=\frac{\pi^{2}}{6}$.

Reg. No. : \qquad
Name: \qquad
V Semester B.Sc. Degree (CBCSS - Sup./Imp.) Examination, November 2021 (2015-'18 Admns.)
CORE COURSE IN MATHEMATICS
5B07MAT : Differential Equations, Laplace Transform and Fourier Series
Time : 3 Hours
Max. Marks : 48

PART - A

Answer all 4 questions.

1. Find an integrating factor of the differential equation $x d y-y d x=0$.
2. Evaluate the Wronskian of $y_{1}=\operatorname{cost}, y_{2}=\sin t$.
3. Write the Laplace transform of $e^{a t}$ cosbt.
4. Justify your answer the function $f(x)=x^{2} \cos n x$ is even.
PART - B

Answer any 8 questions.
5. Solve the initial value problem $y^{\prime}=-2 x y, y(0)=1$.
6. Find the value of b for which the following equation is exact :
$\left(x y^{2}+b x^{2} y\right) d x+(x+y) x^{2} d y=0$.
7. Obtain the differential equation associated with the primitive $y=A x^{2}+B x+C$.
8. Find a particular solution of $y^{\prime \prime}-4 y^{\prime}-4 y=2 e^{2 t}$.
9. Find the general solution of $\left(9 D^{2}-I\right) y=0$, where D is the differential operator.
10. Write the Laplace transform of the function $f(t)=\left\{\begin{array}{ll}e^{t}, & 0<t<1 \\ 0, & 1<t<\infty\end{array}\right.$.
11. Evaluate $L\left(\frac{1-e^{t}}{t}\right)$.
12. Find the inverse Laplace transform of the function $\frac{1}{s^{2}-4 s+5}$.
13. Show that the product of two odd functions is even.
14. Sketch the graph of the function $f(x)=1-x^{2}$ if $-1 \leq x \leq 1$ and $f(x+2)=f(x)$.
PART-C

Answer any 4 questions.
15. Solve the differential equation $y^{2} y^{\prime}-y^{3} \tan x=\sin x \cos ^{2} x$.
16. Given that Y_{1} and Y_{2} are solutions of the non-homogeneous equation $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)$. Prove that $Y_{1}-Y_{2}$ is a solution of the corresponding homogeneous equation $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$.
17. By method of variation of parameters, solve the differential equation, $y^{\prime \prime}+y=\tan x$.
18. Assuming the required conditions, prove that $L\left[f^{\prime}(t)\right]=s L[f(t)]-f(0)$.
19. Find the Fourier sine series expansion of $f(x)=2-x$ when $0<x<2$ with period 4 .
20. Find the Fourier cosine integral representation of the function $f(x)=\left\{\begin{array}{ll}1, & 0<x<1 \\ 0, & x>1\end{array}\right.$.

PART - D
Answer any 2 questions.
21. Find the orthogonal trajectories of the families of curves $\frac{1}{2} x^{2}+y^{2}=c$.
22. Using the method of indetermined coefficients, solve the differential equation $y^{\prime \prime}-y=2 t^{2}$.
23. State and prove convolution theorem for Laplace transform.
24. Find the Fourier series of the function $f(x)=x^{2}$ if $-\pi<x<\pi$ and $f(x+2 \pi)=f(x)$.

Reg. No. \qquad
Name: \qquad

V Semester B.Sc. Degree (CBCSS - OBE - Regular/Supplementary/ Improvement) Examination, November 2022
 (2019 Admission Onwards)
 CORE COURSE IN MATHEMATICS

5B08MAT : Differential Equations and Laplace Transforms
Time : 3 Hours
Max. Marks : 48
PART - A
(Short Answer)
Answer any four questions from this Part. Each question carries 1 mark. ($4 \times 1=4$)

1. Solve $\mathrm{dy}+\mathrm{ydx}=0$.
2. State the order of the ODE $y^{\prime \prime}+\pi y^{3}=0$.
3. Define Wronskian.
4. Write the characteristic equation of $\frac{d^{3} y}{d x^{3}}+y=\sin 4 x$.
5. Define unit step function.

> PART - B
(Short Essay)
Answer any eight questions from this Part. Each question carries $\mathbf{2}$ marks.
6. Find the integrating factor of $y d x-x d y=0$.
7. Find the order and degree of $\frac{d^{3} y}{d x^{3}}+2\left(\frac{d y}{d x}\right)^{\frac{1}{2}}=0$.
8. Show that a separable equation is also exact.
9. State the uniqueness theorem of first order differential equation.
10. Find the basis of the solution of the equation $\frac{d^{2} y}{d x^{2}}+y=0$.
11. Find the general solution of $\frac{d^{2} y}{d x^{2}}+4 y=0$.
12. Write the standard form of Euler-Cauchy equation. Give one example of it.
13. Find the Wronskian of e^{x} and e^{-x}.
14. Find the convolution of t and e^{-t}.
15. Find the Laplace transform of $f(t)=t \cos 4 t$.
16. Evaluate $L^{-1}\left[\frac{2}{(s+4)^{3}}\right]$.

> PART - C

(Essay)

Answer any four questions from this Part. Each question carries 4 marks.
17. Find the orthogonal trajectories of the family $y^{2}=2 x^{2}+c$.
18. Solve $\left(x y^{\prime}+y=x y^{\frac{3}{2}}, y(1)=4\right.$.
19. Solve $\frac{d^{2} y}{d x^{2}}-13 \frac{d y}{d x}+12 y=e^{-2 x}$.
20. Solve $\frac{d^{2} y}{d x^{2}}+16 y=-4 \cos 4 x$.
21. Solve $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+y=x^{2}$.
22. Find the Laplace transform of the function $f(t)=t$; if $t \geq 2$ and 0 , if $t<2$.
23. Solve $y^{\prime \prime}+3 y^{\prime}+2 y=r(t)=u(t-1)-u(t-2), y(0)=0, y^{\prime}(0)=0$.

> PART - D
(Long Essay)
Answer any two questions from this Part. Each question carries 6 marks.
($2 \times 6=12$)
24. Solve $\left(\frac{3-y}{x^{2}}\right) d x+\left(\frac{y^{2}-2 x}{x y^{2}}\right) d y=0, y(-1)=2$ by exactness.
25. Solve the initial value problem $\left(y+\sqrt{x^{2}+y^{2}}\right) d x-x d y=0, y(1)=0$.
26. Solve $x^{2} y^{\prime \prime}-2 x y+2 y=0, y(1)=1, y^{\prime}(1)=1$.
27. Using Laplace transform, solve $y^{\prime \prime}+4 y^{\prime}+3 y=e^{-t}, y(0)=y^{\prime}(0)=1$.

Reg. No. : \qquad
Name : \qquad
V Semester B.Sc. Degree (CBCSS - Supplementary)Examination, November 2022

CORE COURSE IN MATHEMATICS

5B07 MAT : Differential Equations, Laplace Transform and Fourier Series
Time: 3 Hours
PART - A

Answer all 4 questions.

1. Verify whether the differential equation $(2 x+4 y) d x+(2 x-2 y) d y=0$ is exact or not?
2. Prove that the functions $\mathrm{e}^{\pi t}$ and $\frac{1}{\pi} \mathrm{e}^{\pi t}$ are linearly dependent.
3. State the second shifting theorem of Laplace of Laplace transform.
4. If $f(x)$ is an odd function, the co-efficient of sines in the Fourier series expansion of $f(x)$ is \qquad
PART - B

Answer any 8 questions.
5. Solve the initial value problem $y^{\prime}=(1-2 x) y^{2}, y(0)=-\frac{1}{6}$.
6. State the existence and uniqueness theorem for first order initial value problems.
7. Given that Y_{1} and Y_{2} are solutions of the non-homogeneous equation $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)$. Prove that $Y_{1}-Y_{2}$ is a solution of the corresponding homogeneous equation $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$.
8. Find the general solution of $\left(D^{2}+2 D+5 I\right) y=0$, where D is the differential operator.
9. Find a particular solution of $y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{2 t}$.
10. Find the Laplace transform of the function $f(t)=\left\{\begin{array}{cc}\sin t, & 0<t<\pi \\ 0, & \pi<t<\infty\end{array}\right.$.
11. Find $L\left(t^{2} e^{-3 t}\right)$.
12. Find the inverse Laplace transform of the function $\frac{4}{s^{2}-2 s}$.
13. If f and g are periodic functions with same period T, show that any linear combinations of f and g is also T-periodic.
14. Sketch the graph of the function $f(x)=\left\{\begin{array}{cc}0, & -2<x<0 \\ 1, & 0<x<2\end{array}\right.$ and $f(x+4)=f(x)$.

PART - C
Answer any 4 questions.
($4 \times 4=16$)
15. Find the orthogonal trajectories of the families of curves $\frac{1}{2} x^{2}+y^{2}=c$.
16. Using the method of indetermined coefficients, solve the differential equation $y^{\prime \prime}-y^{\prime}-2 y=6 e^{t}$.
17. Find the general solution of $\mathrm{t}^{2} \mathrm{y}^{\prime \prime}-4 \mathrm{ty} \mathrm{y}^{\prime}+6 y=0, \mathrm{t}>0$.
18. Assuming the required conditions, prove that $L\left[f^{\prime}(t)\right]=s L[f(t)]-f(0)$.
19. Show that the functions $\cos \left(\frac{\pi x}{L}\right)$ and $\sin \left(\frac{\pi x}{L}\right)$ are orthogonal.
20. Find the Fourier sine integral representation of the function $f(x)=\left\{\begin{array}{cc}1, & 0<x<1 \\ 0, & x>1\end{array}\right.$.
PART - D

Answer any 2 questions.
($6 \times 2=12$)
21. Solve the differential equation $y^{2} y^{\prime}-y^{3} \tan x=\sin x \cos ^{2} x$.
22. By method of variation of parameters, solve the differential equation, $y^{\prime \prime}+y=\sec x$.
23. Using Laplace transform, solve the initial value problem:
$y^{\prime \prime}-3 y^{\prime}+2 y=4 e^{2 t}$, given that $y(0)=-3, y^{\prime}(0)=5$.
24. Find the Fourier series of the function $f(x)=|x|$ if $-2 \leq x \leq 2$ and $f(x+4)=f(x)$.

Reg. No. : \qquad
Name: \qquad

V Semester B.Sc. Degree (CBCSS-Reg./Sup./Imp.) Examination, November 2020
 (2014 Admn. Onwards) CORE COURSE IN MATHEMATICS

5B07 MAT : Differential Equations, Laplace Transform and Fourier Series
Time: 3 Hours
Max. Marks : 48

PART - A

Answer all 4 questions :

1. Why the differential equation $y^{\prime}+x^{2} y=\frac{1}{y}$ is linear? Justify.
2. Find the Wronskian of $y_{1}=e^{2 t}, y_{2}=e^{-3 t}$.
3. Define Unit step function.
4. Show that the sum of two even functions is even.
PART - B

Answer any 8 questions :
5. Solve the differential equation $y^{\prime}=(1+x)\left(1+y^{2}\right)$.
6. Check whether the equation $\cos (x+y) d x+\left(3 y^{2}+2 y+\cos (x+y)\right) d y=0$ is exact.
7. Solve the differential equation $y^{\prime \prime}-6 y^{\prime}+9 y=0$.
8. Find a particular solution of $y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{2 t}$.
9. Find the general solution of $\left(D^{2}+31\right) y=0$, where D is the differential operator.
10. Find the Laplace transform of the function $f(t)=\left\{\begin{array}{ll}2, & 0<t<\pi \\ 0, & \pi<t<\infty\end{array}\right.$.
11. Find $L\left(e^{-t} \sin 3 t\right)$.
12. Find the inverse Laplace transform of the function $\frac{1}{s\left(s^{2}+\omega^{2}\right)}$.
13. Sketch the graph of the function $f(x)=|x|$ if $-2 \leq x \leq 2$ and $f(x+4)=f(x)$.
14. If f and g are periodic functions with same period T, show that any linear combinations of f and g is also T-periodic.

PART - C

Answer any 4 questions :
15. Solve the differential equation $x y^{\prime}+y=x y^{3}$.
16. Given that Y_{1} and Y_{2} are solutions of the equation $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$. Prove that for any two constants c_{1} and c_{2}, the linear combination $c_{1} Y_{1}+c_{2} Y_{2}$ is also a solution for the differential equation.
17. Find the general solution of $\mathrm{t}^{2} \mathrm{y}^{\prime \prime}-4 \mathrm{t} \mathrm{y}^{\prime}+6 y=0, \mathrm{t}>0$.
18. Assuming the required conditions, prove that $L\left[f^{\prime}(t)\right]=s L[f(t)]-f(0)$.
19. Find the Fourier cosine series expansion of $f(x)=2-x$ when $0 \leq x \leq 2$ with period 4.
20. Find the Fourier integral representation of the function $f(x)=\left\{\begin{array}{ll}1, & |x|<1 \\ 0, & |x|>1\end{array}\right.$.
PART - D

Answer any 2 questions :
(2×6=12)
21. Find the orthogonal trajectories of the families of curves $\frac{1}{2} x^{2}+y^{2}=c$.
22. By method of variation of parameters, solve the differential equation, $y^{\prime \prime}-5 y^{\prime}+6 y=2 e^{t}$.
23. State and prove convolution theorem for Laplace transform.
24. Find the Fourier series of the function $f(x)=x+\pi$ if $-\pi<x<\pi$ and $f(x+2 \pi)=f(x)$.

Reg. No. : \qquad
Name: \qquad

V Semester B.Sc. Degree CBCSS (OBE) Regular Examination, November 2021

(2019 Admn. Only)
CORE COURSE IN MATHEMATICS
5B08 MAT : Differential Equations and Laplace Transforms
Time : 3 Hours
Max. Marks : 48

PART - A
(Short Answer)
Answer any four questions. Each question carries 1 mark.

1. Verify that $y=e^{2 x^{2}}$ is a solution of the ODE $y^{\prime}-4 x y=0$.
2. Give an example of a first order nonlinear ODE.
3. Find a basis of solutions of the ODE $y^{\prime \prime}-4 y=0$.
4. What is Euler-Cauchy equations?
5. State convolution theorem.

PART-B

(Short Essay)
Answer any eight questions. Each question carries $\mathbf{2}$ marks.
6. Solve the initial value problem $y^{\prime}=6 y, y(0)=2$.
7. Does the initial value problem $x y^{\prime}=y-1$ has a unique solution? Justify.
8. Solve the IVP $y^{\prime}=-4 x / y, y(2)=3$.
9. Find the general solution of $y^{\prime}+k y=e^{-k x}$.
10. Find the general solution of $4 y^{\prime \prime}-25 y=0$.
11. Factor $P(D)=D^{2}-3 D-401$ and solve $P(D) y=0$.
12. Find the general solution of $x^{2} y^{\prime \prime}-5 x y^{\prime}+9 y=0$.
13. Find the Wronskian of $\cos 6 x$ and $\sin 6 x$.
14. Find the inverse transform $f(t)$ of $F(s)=\frac{e^{-s}}{s^{2}+4}+\frac{e^{-2 s}}{s^{2}+1}+\frac{e^{-3 s}}{(s+2)^{2}}$.
15. Find the Laplace transform of tsin2t.
16. Find the inverse transform of $\frac{1}{\mathrm{~s}\left(\mathrm{~s}^{2}+9\right)}$.

PART-C

(Essay)
Answer any four questions. Each question carries 4 marks.
17. Solve the IVP $e^{2 x}(2 \cos y d x-\sin y d y)=0, y(0)=0$.
18. Find the general solution of $y^{\prime}=1 /\left(6 e^{y}-2 x\right)$.
19. Solve $y^{\prime \prime}+y^{\prime}=0$ by reducing it to first order.
20. Solve the IVP $y^{\prime \prime}+y^{\prime}-6 y=0, y(0)=10, y^{\prime}(0)=0$.
21. Solve the nonhomogeneous ODE $y^{\prime \prime}+y=\sec x$.
22. Find the Laplace transform of the function $f(t)= \begin{cases}2, & \text { if } 0<t<1 \\ \frac{1}{2} t^{2}, & \text { if } 1<t<\frac{1}{2} \pi \\ \cos t, & \text { if } t>\frac{1}{2} \pi .\end{cases}$
23. Solve the IVP $y^{\prime \prime}+3 y^{\prime}+2 y=\delta(t-1), y(0)=0, y^{\prime}(0)=0$ by Laplace transform.

PART - D

(Long Essay)
Answer any two questions. Each question carries 6 marks.
24. Solve $2 x y y^{\prime}=y^{2}-x^{2}$ by reducing it to variable separable form.
25. Solve the IVP $\left(e^{x+y}+y e^{y}\right) d x+\left(x e^{y}-1\right) d y=0, y(0)=-1$.
26. Solve the initial value problem $y^{\prime \prime}-6 y^{\prime}+9 y=e^{3 x}, y(0)=1, y^{\prime}(0)=1$.
27. Solve the integral equation $y(t)-\int_{0}^{t}(1+\tau) y(t \tau) d \tau=1$ - sinht by Laplace
Transform.

