K19U 2255
Reg. No. :
Name: \qquad

V Semester B.Sc. Degree (CBCSS-Reg./Sup./Imp.) Examination, November - 2019
(2014 Admn. Onwards)
\section*{Core Course in Mathematics}
5B 06 MAT: ABSTRACT ALGEBRA

Time : 3 Hours
Max. Marks : 48

SECTION - A

Answer All Questions, Each question carries One Mark.

1. Is the usual addition a binary operation on the set of all prime numbers? Justify your answer.
2. Define orbits of a permutation σ of a set A.
3. Define normal subgroup of a group G. Given an example.
4. What is the characteristic of the ring of real numbers under usual addition and multiplication?

SECTION-B

Answer any Eight Questions, Each question carries Two Marks.
5. Prove that every cyclic group is abelian.
6. Show that a nonempty subset H of group G is a subgroup of G if and only if $a b^{-1} \in H$ for all $a, b \in H$.
7. Describe S_{n}, the symmetric group on n letters.
8. Find the index of $\langle 3\rangle$ in the group Z_{24}.
9. Prove that the identity permutation in S_{n} is an even permutation for $n \geq 2$.
10. Determine the number of group homomorphisms from z onto z.
11. Find the characteristic of the ring $z_{6} \times z_{21}$.
12. Prove that every field is an integral domain.
13. Define a ring and give an example of a finite ring which is not an integral domain.
14. Find the remainder of 8^{103} when divided by 13.

SECTION-C

Answer any Four Questions, Each question carries four Marks.($4 \times 4=16$)
15. Show that every finite cyclic group of order n is isomorphic to $\left\langle Z_{n},+_{n}\right\rangle$.
16. Show that the set of all permutations of any nonempty set A is group under permutation multiplication.
17. Prove that every group of prime order is cyclic.
18. Let φ be a homomorphism of a group G into G^{\prime}. Then prove the following:
a) If $a \in G$, prove that $\varphi\left(a^{-1}\right)=(\varphi(a))^{-1}$
b) If H is a subgroup of G, then $\phi[H]$ is a subgroup of G^{\prime}
19. Prove that every finite integral domain is a field.
20. Prove that in the ring Z_{n} the divisors of 0 are precisely those nonzero elements that are not relatively prime to n.

SECTION-D

Answer any Two Questions, Each Question carries Six Marks.($2 \times 6=12$)
21. a) Define the greatest common divisor of two positive integers. Also find the quotient and remainder when 50 is divided by 8 according to division algorithm.
b) Prove that subgroup of a cyclic group is cyclic.
22. a) State and prove Lagrange's Theorem.
b) Prove that the collection of all even permutations of $\{1,2,3, \ldots, n\}$ forms a subgroup of order $\frac{n!}{2}$ of the symmetric group $S_{n} ; n \geq 2$.
23. a) State and prove the fundamental homomorphism theorem.
b) Show that a group homomorphism is one-one if and only if its kernel consists of only the identity element.
24. a) Show that the cancellation law holds in a ring iff it has no divisors of 0.
b) Show that the matrix $\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]$ is a divisor of 0 in $M_{2}(z)$.

K20U 1533
Reg. No. :
Name : \qquad

V Semester B.Sc. Degree (CBCSS - Reg./Sup./Imp.)
 Examination, November 2020
 (2014 Admn. Onwards)
 CORE COURSE IN MATHEMATICS
 5B06MAT : Abstract Algebra

Time : 3 Hours
Max. Marks : 48

SECTION - A

Answer all the questions each question carries 1 mark :

1. On \mathbb{Z}^{-}, define * by letting $a * b=a^{b}$. Find $(2 * 2) * 3$.
2. What is the order of dihedral group D_{4} ?
3. Let G be a group and let $\phi: \mathrm{G} \rightarrow \mathrm{G}$ by $\phi(\mathrm{g})=\mathrm{g}^{-1}$. Is ϕ a homomorphism ?
4. Find the number of zero divisors of the ring \mathbb{Z}_{6}.

SECTION - B

Answer any eight questions each question carries 2 marks :
5. State and prove the left cancellation law of groups.
6. Find the remainder when -61 is divided by 7 .
7. Compute $\tau \sigma^{2}$, where $\sigma=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 4 & 5 & 6 & 2\end{array}\right)$ and $\tau=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 2 & 4 & 3 & 1 & 6\end{array}\right)$.
8. Express the permutation $\sigma=\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 8 & 6 & 7 & 4 & 1 & 5 & 2\end{array}\right)$ into product cycles
and transpositions.
9. Write all the left cosets of $4 \mathbb{Z}$ of \mathbb{Z}.
P.T.O.

K20U 1533

|||||||||||||||||||||||||

10. Prove that a group homomorphism $\phi: G \rightarrow G^{\prime}$ is one-to-one map if and only if $\operatorname{Ker}(\phi)=\{e\}$.
11. Find the order of $5+\langle 4\rangle$ in $\mathbb{Z}_{12} /\langle 4\rangle$.
12. Let R be a ring with additive identity 0 . Show that $(-a)(-b)=a b$, for any $a, b \in R$.
13. Define characteristic of a ring and give an example of a ring with characteristic 59 .
14. Find all solutions of $2 x \equiv 6(\bmod 4)$.

SECTION - C

Answer any four questions each question carries 4 marks :
15. Prove that subgroup of a cyclic group is cyclic.
16. Show that every permutation on a finite set is a product of disjoint cycles.
17. State and prove Lagrange's theorem.
18. Show that a subgroup H of G is a normal subgroup if and only if $\mathrm{ghg}^{-1} \in \mathrm{H}$, for all $\mathrm{g} \in \mathrm{G}$ and $\mathrm{h} \in \mathrm{H}$.
19. Prove that every field is an integral domain.
20. If $a \in \mathbb{Z}$ and p is a prime not dividing a. Show that p divides $a^{p-1}-1$.
SECTION - D

Answer any two questions each question carries 6 marks :
21. Let G be a cyclic group with n elements and generated by a . Let $\mathrm{b} \in \mathrm{G}$ and let $b=a^{s}$. Prove that b generates a cyclic subgroup H of G containing n / d elements.
22. Prove that every group is isomorphic to a group of permutation.
23. State and prove the fundamental homomorphism theorem.
24. Let m be a positive integer and let $a, b \in \mathbb{Z}_{m}$. Let d be the gcd of a and b. Prove that the equation $\mathrm{ax}=\mathrm{b}$ has a solution in \mathbb{Z}_{Z} if and only if d divides $\mathrm{b} . \quad(\mathbf{2 \times 6 = 1 2)}$

Reg. No. : \qquad
Name: \qquad

V Semester B.Sc. Degree (CBCSS - Supplementary) Examination, November 2022
 (2016-18 Admissions) CORE COURSE IN MATHEMATICS 5B06MAT - Abstract Algebra

Time: 3 Hours

SECTION - A

Answer all the questions, each question carries 1 mark.

1. Define binary operation.
2. The order of the group A_{5} is
3. Let $\phi: \mathbb{Z} \rightarrow \mathbb{R}$ under addition be given by $\phi(n)=n$. Find $\operatorname{Ker}(\phi)$.
4. A non-commutative division ring is called
SECTION - B

Answer any eight questions, each question carries $\mathbf{2}$ marks.
5. Let $(G, *)$ be group. Show that $(a * b)^{\prime}=b^{\prime} * a^{\prime}$, for all $a, b \in G$.
6. Write all subgroups of Klein-4 group.
7. Define orbits and find all the orbits of the permutation

$$
\sigma=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
3 & 8 & 6 & 7 & 4 & 1 & 5 & 2
\end{array}\right) \text { in } S_{8} .
$$

8. Define odd and even permutations and identify the permutation $(1,4,5,6)(2,1,5)$.
9. Does there exists a subgroup of order 20 of a group of order 30 ? Justify.
10. Let $\phi: G \rightarrow G^{\prime}$ be a group homomorphism and let $a \in G$. Show that

$$
\phi\left(\mathrm{a}^{-1}\right)=\phi(\mathrm{a})^{-1} .
$$

11. Write all the left cosets of $6 \mathbb{Z}$ in \mathbb{Z}.
12. Let R be a ring with additive identity 0 . Show that $a(-b)=(-a) b=-(a b)$, for any $a, b \in R$.
13. Find the solutions of the equation $x^{2}-5 x+6=0$ in \mathbb{Z}_{12}.
14. Compute the remainder of 8^{103} when divided by 13 .
SECTION - C

Answer any four questions, each question carries 4 marks.
15. Find the cyclic subgroup of \mathbb{Z}_{42} generated by 30 .
16. In the permutation group S_{n}, show that the number of even and odd permutations are same.
17. Show that the order of an element of a finite group divides the order of the group.
18. Show that a subgroup H of G is a normal subgroup if and only if $\mathrm{gHg}^{-1}=\mathrm{H}$, for all $\mathrm{g} \in \mathrm{G}$.
19. In the ring \mathbb{Z}_{n}, show that the divisors of 0 are precisely those non zero elements that are not relatively prime to n.
20. Find all the solutions of the congruence $15 \mathrm{x} \equiv 27(\bmod 18)$.
SECTION - D

Answer any two questions, each question carries 6 marks.
21. Let G be a cyclic group with generator a. Prove that :
a) If the order of G is infinite, then G is isomorphic to $(\mathbb{Z},+)$
b) If G has finite order n, then G is isomorphic to $\left(\mathbb{Z}_{n},+{ }_{n}\right)$.
22. State and prove the Cayley's theorem.
23. Let ϕ be a homomorphism of a group G into a group G^{\prime}. Show that :
a) If H is a subgroup of G , then $\phi[\mathrm{H}]$ is a subgroup of G^{\prime}.
b) If K^{\prime} is a subgroup of G^{\prime}, then $\phi^{-1}\left[K^{\prime}\right]$ is a subgroup of G.
24. Prove that the set G_{n} of non zero elements of \mathbb{Z}_{n} that are not 0 divisors forms a group under multiplication modulo n.

Reg. No.: \qquad
Name : \qquad

V Semester B.Sc. Degree (CBCSS - OBE - Regular/Supplementary/ Improvement) Examination, November 2022
 (2019 Admission Onwards) CORE COURSE IN MATHEMATICS 5B07MAT : Abstract Algebra

Time : 3 Hours
Max. Marks : 48

PART - A

Answer any 4 questions. They carry 1 mark each.

1. Find the order of the cyclic subgroup of \mathbb{Z}_{4} generated by 3 .
2. What is the order of the cycle $(1,4,5,7)$ in S_{8} ?
3. Let $\phi: G \rightarrow G^{\prime}$ be a group homomorphism of G onto G^{\prime}. If G is abelian, prove that G^{\prime} is abelian.
4. Let p be a prime. Show that $(a+b)^{p}=a^{p}+b^{p}$ for all $a, b \in \mathbb{Z}_{p}$.
5. Solve the equation $3 x=2$ in the field \mathbb{Z}_{7}.

PART-B
Answer any 8 questions from among the questions 6 to 16. These questions carry 2 marks each.
6. Prove that in a group G, the identity element and inverse of each element are unique.
7. Let H and K be subgroups of a group G . Prove that $\mathrm{H} \cap \mathrm{K}$ is a subgroup of G .
8. State and prove division algorithm for \mathbb{Z}.
9. Let G be a group and suppose $a \in G$ generates a cyclic subgroup of order 2 and is the unique such element. Show that $a x=x a$ for all $x \in G$.
10. Let $\sigma=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 4 & 5 & 6 & 2\end{array}\right)$ and $\sigma=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 1 & 3 & 6 & 5\end{array}\right)$ be permutations in S_{6}. Find $\tau \sigma$ and $|\langle\sigma\rangle|$.
11. Express the permutation $\sigma=\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 6 & 4 & 1 & 8 & 2 & 5 & 7\end{array}\right)$ in S_{8} as a product of disjoint cycles and then as a product of transpositions.
12. Find all orbits of the permutation $\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 1 & 3 & 6 & 2 & 4\end{array}\right)$.
13. Find the index of $\langle 3\rangle$ in the group of \mathbb{Z}_{24}.
14. Prove that every group of prime order is cyclic.
15. Prove that a group homomorphism $\phi: G \rightarrow G^{\prime}$ is a one to one map if and only if $\operatorname{ker}(\phi)=\{e\}$.
16. Let R be a ring with additive identity 0 . Then for any $\mathrm{a}, \mathrm{b} \in \mathrm{R}$ prove that
a) $\mathrm{a} 0=0 \mathrm{a}=0$
b) $a(-b)=(-a) b=-(a b)$.
PART - C

Answer any 4 questions from among the questions 17 to 23 . These questions carry 4 marks each.
17. Let G be a group and let g be one fixed element of G. Show that the map I_{g}, such that $i_{g}(x)=g x g^{\prime}$ for $x \in G$ is an isomorphism of G with itself.
18. Draw subgroup diagram for Klein 4-group V .
19. Let G be a finite cyclic group of order n with generator a . Prove that G is isomorphic to $\left(\mathbb{Z}_{n},+_{n}\right)$.
20. Let $\mathrm{n} \geq 2$. Prove that the collection of all even permutations of $\{1,2,3, \ldots, \mathrm{n}\}$ forms a subgroup of order $\frac{n!}{2}$ of the symmetric group S_{n}.
21. Let H be a subgroup of G such that $\mathrm{g}^{-1} \mathrm{hg} \in \mathrm{H}$ for all $\mathrm{g} \in \mathrm{G}$ and all $\mathrm{h} \in \mathrm{H}$. Show that every left coset gH is the same as the right coset Hg .
22. Let H be a subgroup of G . Prove that left coset multiplication is well defined by the equation $(a H)(b H)=(a b) H$ if and only if H is a normal subgroup of G.
23. Let $\phi: \mathbb{Z} \rightarrow S_{8}$ be homomorphism such that $\phi(1)=(1,4,2,6)(2,5,7)$. Find ker (ϕ) and $\phi(20)$.
PART - D

Answer any 2 questions from among the questions 24 to 27 . These questions carry 6 marks each.
24. a) Let G be a cyclic group with n elements and generated by a. Let $b \in G$ and $\mathrm{b}=\mathrm{a}^{\mathrm{s}}$. Prove that
i) b generates a cyclic subgroup of H of G containing n / d elements, where d is the gcd of n and s.
ii) $\left\langle a^{s}\right\rangle=\left\langle a^{t}\right\rangle$ if and only if $\operatorname{gcd}(s, n)=\operatorname{gcd}(t, n)$.
b) Let p and q be prime numbers. Find the number of generators of the cyclic group \mathbb{Z}_{pq}.
25. a) Prove that every coset (left or right) of a subgroup H of a group G has the same number of elements as H .
b) State and prove Lagrange's theorem.
26. Let $\phi: G \rightarrow G^{\prime}$ be a group homomorphism and let $H=\operatorname{ker}(\phi)$. Let $a \in G$. Prove that the set $\phi^{-1}[\{\phi(a)\}]=\{x \in G: \phi(x)=\phi(a)\}$ is the left coset $a H$ of H and is also the right $\operatorname{coset} \mathrm{Ha}$ of H .
27. a) Prove that every field F is an integral domain.
b) Prove that every finite integral domain is a field.
c) Give an example of an integral domain which is not a field.

Reg. No. : \qquad
Name : \qquad

V Semester B.Sc. Degree (CBCSS - Sup./Imp.) Examination, November 2021 (2015 - '18 Admns)
 Core Course in Mathematics 5B06MAT : ABSTRACT ALGEBRA

Time : 3 Hours
Max. Marks : 48

SECTION - A

Answer all the questions. Each question carries 1 mark.

1. True or false : A binary operation $*$ on a set S is commutative if there exists $a, b \in S$ such that $a * b=b * a$.
2. Cycle of length two is called \qquad
3. Write a non-trivial improper normal subgroup of S_{3}.
4. Which element is the multiplicative inverse of 4 in the field \mathbb{Z}_{5} ?
SECTION - B

Answer any eight questions. Each question carries $\mathbf{2}$ marks.
5. Let $*$ be a binary operation on \mathbb{Q}^{+}defined by $a * b=\frac{a b}{2}$. Find the identity of $*$
6. Let $(G, *)$ be a group and if $a, b \in G$. Show that the linear equation $a * x=b$ has a unique solution in G.
7. Define Octic group and write the elements.
8. Express the permutation $\sigma=\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 6 & 4 & 1 & 8 & 2 & 5 & 7\end{array}\right)$ into product of disjoint
cycles.
9. Compute $\left(\langle 4\rangle: \mathbb{Z}_{12}\right)$.
10. Let $\phi: G \rightarrow G^{\prime}$ be a group homomorphism and e be the identity element in G. Show that $\oplus(\mathrm{e})$ is the identity element of G^{\prime}.
11. Define inner automorphism of a group.
12. Is \mathbb{Z} a field ? Justify your claim.
13. Find all solutions of $x^{2}+x=2$ in the ring \mathbb{Z}_{4}.
14. Let R be a ring with unity and $\mathrm{n} .1 \neq 0$ for all $\mathrm{n} \in \mathbb{Z}^{+}$. Show that R has characteristic 0 .

SECTION - C

Answer any four questions. Each question carries 4 marks.
15. Prove that every cyclic group is abelian. What about the converse.
16. Write the composition table for the group S_{3}.
17. Prove that every group of prime order is cyclic.
18. Let $\phi: \mathrm{G} \rightarrow \mathrm{G}^{\prime}$ be a group homomorphism and let $\mathrm{H}=\operatorname{Ker}(\phi)$. Let $\mathrm{a} \in \mathrm{G}$. Show that the set $\phi^{-1}[\{\phi(a)\}]=\{x \in G \mid \phi(x)=\phi(a)\}$ is the left coset aH of H.
19. Show that the cancellation laws hold in a ring R if and only if R has no divisors of 0 .
20. Show that for every integer n, the number $n^{33}-n$ is divisible by 15 .

SECTION - D

Answer any two questions. Each question carries 6 marks.
21. Find all subgroups of \mathbb{Z}_{18} and draw the subgroup diagram.
22. Let G and G^{\prime} be groups and let $\phi: \mathrm{G} \rightarrow \mathrm{G}^{\prime}$ be a one-to-one function such that $\phi(x y)=\phi(x) \phi(y)$ for all $x, y \in G$. Show that $\phi[G]$ is a subgroup of G^{\prime} and $\phi: G \rightarrow \phi[G]$ is an isomorphism.
23. Let H be a normal subgroup of a group G . Prove that the cosets of H form a group $\mathrm{G} \mid \mathrm{H}$ under the operation $(\mathrm{aH})(\mathrm{bH})=(\mathrm{ab}) \mathrm{H}$.
24. State and prove the Euler's theorem and find the remainder of 7^{1000} when divided by 24 .

Reg. No. : \qquad
Name: \qquad

V Semester B.Sc. Degree CBCSS (OBE) Regular Examination, November 2021 (2019 Admn. Only) CORE COURSE IN MATHEMATICS
 5B07 MAT : Abstract Algebra

Time : 3 Hours
Max. Marks : 48

PART - A

(Short Answer)
Answer any 4 questions. Each question carries 1 mark.

1. Define abelian group with an example.
2. Is \mathbb{Z}^{*} under division a binary operation. Justify.
3. Every infinite order cyclic group is isomorphic to
4. What is the order of alternating group A_{n} ?
5. State Lagrange's theorem.

$$
\begin{gathered}
\text { PART - B } \\
\text { (Short Essay) }
\end{gathered}
$$

Answer any eight questions. Each question carries 2 marks.
6. In a group G with binary operation *, prove that there is only one element e in G such that $e * x=x * e=x, \forall x \in G$.
7. Prove that $\left(\mathbb{Q}^{+}, *\right)$, where $*$ is defined by $a * b=\frac{a b}{2} ; a, b \in \mathbb{Q}^{+}$is a group.
8. For sets H and K, Let $H \cap K=\{x / x \in H$ and $x \in K\}$, show that if H and K are subgroups of a group G , then $\mathrm{H} \cap \mathrm{K}$ is also a subgroup of G .
9. Prove that the order of an element of a finite group divides the order of group.
10. Explain the elements of group S_{3}.
11. Find the order of (14)(3578) in S_{8}.
12. Prove that every permutation σ of a finite set is a product of disjoint cycles.
13. Determine the permutation (18)(364)(57) in S_{8} is odd or even.
14. State fundamental homomorphism theorem.
15. Find the order of $\mathbb{Z}_{6} /<3>$.
16. Let $\phi: G \rightarrow G^{\prime}$ be a group homomorphism. Prove that Ker is a subgroup of G.

PART-C
(Essay)
Answer any four questions. Each question carries 4 marks.
17. Prove that subgroup of a cyclic group is cyclic.
18. Let G be a group and $\mathrm{a} \in \mathrm{G}$. Prove that $\mathrm{H}=\left\{\mathrm{a}^{n} / n \in \mathbb{Z}\right\}$ is the smallest subgroup of G that contains a.
19. Determine whether the set of all $\mathrm{n} \times \mathrm{n}$ matrices with determinant -1 is a subgroup of G .
20. Let A be a non-empty set. Prove that S_{A}, the collection of all permutations of A is group under permutation multiplication.
21. Define rings. Prove that $\left(\mathbb{Z}_{n},+_{n}, x_{n}\right)$ is a ring.
22. Prove that every group is isomorphic to a group of permutations.
23. Prove that $\gamma: \mathbb{Z} \rightarrow \mathbb{Z}_{n}$; where $\gamma(m)=r$; where r is the remainder when m is divided by n is a homomorphism.

PART - D

(Long Essay)

Answer any two questions. Each question carries 6 marks.
24. Prove that every integral domain is a field.
25. Let H be a subgroup of G , then prove that the left coset multiplication is well defined by the equation $(\mathrm{aH})(\mathrm{bH})=(\mathrm{abH})$ if and only if H is a normal subgroup of G .
26. a) Find all cosets of the subgroup $<2>$ of \mathbb{Z}_{12}.
b) Prove that every group of prime order is cyclic.
27. Let G be a cyclic group with n elements generated by a. Let $b \in G$ and $b=a^{s}$, then prove that b generates a cyclic subgroup H of G containing $\frac{n}{d}$ elements, where d is the gcd of n and s .

Reg. No.: \qquad
Name : \qquad

V Semester B.Sc. Degree (CBCSS - OBE - Regular/Supplementary/ Improvement) Examination, November 2022
 (2019 Admission Onwards)
 CORE COURSE IN MATHEMATICS
 5B05MAT : Set Theory, Theory of Equations and Complex Numbers

Time : 3 Hours

PART-A

Answer any four questions from this Part. Each question carries one mark.

1. Give an example of a countable set.
2. Explain Descartes rule of signs.
3. If $f(x)=0$ is an equation of odd degree, then it has at least one \qquad root.
4. Say true or false. "Zero is a complex number".
5. Find the conjugate of $6-5 \mathrm{i}$.
PART-B

Answer any eight questions from this Part. Each question carries two marks.
6. Define a denumerable set, give an example.
7. If α, β, γ are the roots of $2 x^{3}+x^{2}-2 x-1=0$, find
i) $\alpha+\beta+\gamma$
ii) $\alpha \beta \gamma$
iii) $\alpha \beta+\beta \gamma+\alpha \gamma$.
8. Search for rational roots of $f(x)=2 x^{3}-5 x^{2}+5 x-3=0$.
9. Show that $x^{5}-2 x^{2}+7=0$ has at least two imaginary roots.
10. Transform the equation $x^{3}-6 x^{2}+5 x+12=0$, into an equation lacking second term.
11. Show that if $x=1+2 i$, then $x^{2}-2 x+5=0$.
12. Find the modulus and amplitude of $\sqrt{3}-i$.
13. Express $\frac{1+i}{2+3 i}$ in the form of $X+i Y$.
14. A) The solution of a reciprocal equation of first type depends on that of an reciprocal equation of first type and of \qquad degree.
B) The solution of a reciprocal equation of first type and of degree 2 m depends on that of an equation of degree \qquad —.
15. Find the roots of $2 x^{3}+3 x^{2}-1=0$.
16. A) Write the standard form of a cubic equation.
B) What is reciprocal equation?

PART-C

Answer any four questions from this Part. Each question carries four marks.
17. Show that the set $E_{n}=\{2 n: n \in \mathbb{N}\}$ of even natural numbers is countably infinite.
18. If α, β, γ are the roots of $x^{3}+P_{1} x^{2}+P_{2} x+P_{3}=0$ then find the equation whose roots are $\alpha^{3}, \beta^{3}, \gamma^{3}$.
19. Find an upper bound and lower bound for the limit to the roots of $f(x)=3 x^{4}-61 x^{3}+127 x^{2}+220 x-520=0$.
20. Solve the reciprocal equation, $x^{4}-8 x^{3}+17 x^{2}-8 x+1=0$.
21. Find the points of Q_{1}, Q_{2}, Q_{3} representing the values of $\sqrt[3]{z}$ where $z=\sqrt{5}+i \sqrt{3}$.

22. A) Define $n^{\text {th }}$ root of unity.
B) Define Principal $n^{\text {th }}$ root of unity.
23. Explain the behaviour of roots of the equation $a x^{3}+3 b x^{2}+3 c x+d=0$, with respect to discriminant.

PART-D

Answer any two questions from this Part. Each question carries six marks.
24. State and prove Cantor's theorem.
25. i) Find the condition that the sum of two roots of α, β of

$$
x^{4}+p_{1} x^{3}+p_{2} x^{2}+p_{3} x+P_{4}=0, \text { may be zero. }
$$

ii) Use the result to find the roots of the equation, whose roots are the six values of $\frac{1}{2}(\alpha+\beta)$, where α, β are any roots of $a x^{4}+4 b x^{3}+6 c x^{2}+4 d x+e=0$.
26. If α, β, γ are the roots of $a x^{3}+3 b x^{2}+3 c x+d=0$, then find the equation whose roots are squares of the difference of the roots.
27. Define multiplication and division of two complex numbers.

Reg. No. : \qquad
Name: \qquad

V Semester B.Sc. Degree CBCSS (OBE) Regular Examination, November 2021 (2019 Admn. Only) CORE COURSE IN MATHEMATICS 5B05 MAT : Set Theory, Theory of Equations and Complex Numbers

Time : 3 Hours
Max. Marks : 48

PART - A

Answer any four questions from this Part. Each question carries 1 mark.

1. State the Uniqueness theorem.
2. Sum of the roots of the equation $x^{3}-x-1=0$ is \qquad .
3. If $1+i$ is a root of a quadratic equation, then the other root will be \qquad -.
4. What is a reciprocal equation ?
5. If the discriminant Δ of a cubic equation is negative, then it has \qquad .
PART - B

Answer any eight questions from this Part. Each question carries 2 marks.
6. If S is a finite set and $T \subseteq S$, then prove that T is finite.
7. Transform $x^{3}-6 x^{2}+5 x+12=0$ into an equation which lacks the second term.
8. If α, β, γ are the roots of the equation $2 x^{3}+3 x^{2}-x-1=0$, then find the equation whose roots are $\alpha-1, \beta-1, \gamma-1$.
9. State De Gua's rule.
10. Find an upper limit of the positive roots of the equation $x^{3}-10 x^{2}-11 x-100=0$.
11. Write necessary and sufficient condition that the equation $a x^{3}+3 b x^{2}+3 c x+d=0$ has two equal roots.
12. Discuss the character of the roots of the equation $x^{3}+29 x-97=0$ without finding them.
13. Explain the first and second kind reciprocal equations.
14. Express the complex number $2+2 \sqrt{3}$ in polar form.
15. Find $\operatorname{Arg}(-1-i)$.
16. State general form of De Movire's theorem.
PART - C

Answer any four questions from this Part. Each question carries 4 marks.
17. State and prove Cantor's theorem.
18. Use Descartes rule of signs to show that $x^{7}-3 x^{4}+2 x^{3}-1=0$ has at least four imaginary roots.
19. If $a+b+c=0$, then show that $a^{5}+b^{5}+c^{5}=5 a b c(a b+b c+c a)$.
20. Solve $6 x^{5}+11 x^{4}-33 x^{3}-33 x^{2}+11 x+6=0$.
21. Solve $y^{3}-7 y^{2}+36=0$, where the difference between two of the roots is five.
22. For any two complex numbers a and b, prove that

$$
\left|a+\sqrt{a^{2}-b^{2}}\right|+\left|a-\sqrt{a^{2}-b^{2}}\right|=|a+b|+|a-b| .
$$

23. If $z=1+i$, then find $(1+i)^{101}$.
PART - D

Answer any two questions from this Part. Each question carries 6 marks.
24. Prove that the set of all rational numbers is denumerable.
25. Find the rational roots of the equation $x^{3}-5 x^{2}-18 x+72=0$.
26. Explain the Cardan's solution for general cubic equation.
27. Find all the fourth roots of unity and locate them graphically.

