Reg. No. :

V Semester B.Sc. Degree (CBCSS- Reg./Sup./Imp.) Examination, November - 2019

(2014 Admn. Onwards)

Core Course in Mathematics

5B 06 MAT: ABSTRACT ALGEBRA

Time: 3 Hours

Max. Marks: 48

K19U 2255

SECTION - A

Answer All Questions, Each question carries One Mark. (4×1=4)

- 1. Is the usual addition a binary operation on the set of all prime numbers? Justify your answer.
- **2.** Define orbits of a permutation σ of a set A.
- 3. Define normal subgroup of a group G. Given an example.
- 4. What is the characteristic of the ring of real numbers under usual addition and multiplication?

SECTION-B

Answer any Eight Questions, Each question carries Two Marks.

 $(8 \times 2 = 16)$

- 5. Prove that every cyclic group is abelian.
- **6.** Show that a nonempty subset *H* of group G is a subgroup of *G* if and only if $ab^{-1} \in H$ for all $a, b \in H$.
- 7. Describe S_n , the symmetric group on *n* letters.
- 8. Find the index of $\langle 3 \rangle$ in the group Z_{24} .

K19U 2255

- 9. Prove that the identity permutation in S_n is an even permutation for $n \ge 2$.
- 10. Determine the number of group homomorphisms from z onto z.
- 11. Find the characteristic of the ring $z_6 \times z_{21}$.
- 12. Prove that every field is an integral domain.
- **13.** Define a ring and give an example of a finite ring which is not an integral domain.
- 14. Find the remainder of 8103 when divided by 13.

SECTION - C

Answer any Four Questions, Each question carries four Marks.(4×4=16)

- **15.** Show that every finite cyclic group of order *n* is isomorphic to $\langle Z_n, +_n \rangle$.
- **16.** Show that the set of all permutations of any nonempty set A is group under permutation multiplication.
- 17. Prove that every group of prime order is cyclic.
- **18.** Let φ be a homomorphism of a group G into G'. Then prove the following:
 - a) If $a \in G$, prove that $\varphi(a^{-1}) = (\varphi(a))^{-1}$
 - b) If H is a subgroup of G, then $\phi[H]$ is a subgroup of G'
- 19. Prove that every finite integral domain is a field.
- **20.** Prove that in the ring Z_n the divisors of 0 are precisely those nonzero elements that are not relatively prime to n.

SECTION - D

Answer any Two Questions, Each Question carries Six Marks.(2×6=12)

- 21. a) Define the greatest common divisor of two positive integers. Also find the quotient and remainder when 50 is divided by 8 according to division algorithm.
 - b) Prove that subgroup of a cyclic group is cyclic.

(3)

- 22. a) State and prove Lagrange's Theorem.
 - b) Prove that the collection of all even permutations of $\{1,2,3,\ldots,n\}$ forms a subgroup of order $\frac{n!}{2}$ of the symmetric group $S_n; n \ge 2$.
- 23. a) State and prove the fundamental homomorphism theorem.
 - b) Show that a group homomorphism is one-one if and only if its kernel consists of only the identity element.
- 24. a) Show that the cancellation law holds in a ring iff it has no divisors of 0.
 - b) Show that the matrix $\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$ is a divisor of 0 in $M_2(z)$.

Reg. No. :

Name :

V Semester B.Sc. Degree (CBCSS – Reg./Sup./Imp.) Examination, November 2020 (2014 Admn. Onwards) CORE COURSE IN MATHEMATICS 5B06MAT : Abstract Algebra

Time : 3 Hours

Max. Marks: 48

SECTION - A

Answer all the questions each question carries 1 mark :

- 1. On \mathbb{Z}^+ , define \star by letting a \star b = a^b. Find (2 \star 2) \star 3.
- 2. What is the order of dihedral group D_{4} ?
- 3. Let G be a group and let ϕ : G \rightarrow G by ϕ (g) = g⁻¹. Is ϕ a homomorphism ?
- 4. Find the number of zero divisors of the ring \mathbb{Z}_6 .

SECTION - B

Answer any eight questions each question carries 2 marks :

- 5. State and prove the left cancellation law of groups.
- 6. Find the remainder when -61 is divided by 7.
- 7. Compute $\tau\sigma^2$, where $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 4 & 5 & 6 & 2 \end{pmatrix}$ and $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 2 & 4 & 3 & 1 & 6 \end{pmatrix}$.
- 8. Express the permutation $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 8 & 6 & 7 & 4 & 1 & 5 & 2 \end{pmatrix}$ into product cycles and transpositions.
- 9. Write all the left cosets of $4\mathbb{Z}$ of \mathbb{Z} .

P.T.O.

K20U 1533

(4×1=4)

K20U 1533

 $(8 \times 2 = 16)$

- 10. Prove that a group homomorphism $\phi : G \to G'$ is one-to-one map if and only if Ker $(\phi) = \{e\}$.
- 11. Find the order of $5 + \langle 4 \rangle$ in $\mathbb{Z}_{12} / \langle 4 \rangle$.
- 12. Let R be a ring with additive identity 0. Show that (-a)(-b) = ab, for any $a, b \in R$.
- 13. Define characteristic of a ring and give an example of a ring with characteristic 59.
- 14. Find all solutions of $2x \equiv 6 \pmod{4}$.

SECTION - C

Answer any four questions each question carries 4 marks :

- 15. Prove that subgroup of a cyclic group is cyclic.
- 16. Show that every permutation on a finite set is a product of disjoint cycles.
- 17. State and prove Lagrange's theorem.
- 18. Show that a subgroup H of G is a normal subgroup if and only if $ghg^{-1} \in H$, for all $g \in G$ and $h \in H$.
- 19. Prove that every field is an integral domain.
- 20. If $a \in \mathbb{Z}$ and p is a prime not dividing a. Show that p divides $a^{p-1} 1$. (4×4=16)

SECTION - D

Answer any two questions each question carries 6 marks :

- 21. Let G be a cyclic group with n elements and generated by a. Let $b \in G$ and let $b = a^s$. Prove that b generates a cyclic subgroup H of G containing n/d elements.
- 22. Prove that every group is isomorphic to a group of permutation.
- 23. State and prove the fundamental homomorphism theorem.
- 24. Let m be a positive integer and let a, $b \in \mathbb{Z}_m$. Let d be the gcd of a and b. Prove that the equation ax = b has a solution in \mathbb{Z}_m if and only if d divides b. (2×6=12)

K22U 1962

Reg. No. :

Name :

V Semester B.Sc. Degree (CBCSS – Supplementary) Examination, November 2022 (2016 – 18 Admissions) CORE COURSE IN MATHEMATICS 5B06MAT – Abstract Algebra

Time : 3 Hours

Max. Marks: 48

SECTION - A

Answer all the questions, each question carries 1 mark.

- 1. Define binary operation.
- 2. The order of the group A_5 is
- 3. Let $\phi : \mathbb{Z} \to \mathbb{R}$ under addition be given by ϕ (n) = n. Find Ker (ϕ).
- 4. A non-commutative division ring is called

SECTION - B

Answer any eight questions, each question carries 2 marks.

- 5. Let (G, *) be group. Show that (a*b)' = b' * a', for all $a, b \in G$.
- 6. Write all subgroups of Klein-4 group.
- 7. Define orbits and find all the orbits of the permutation

 $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 8 & 6 & 7 & 4 & 1 & 5 & 2 \end{pmatrix} \text{ in } S_8.$

- 8. Define odd and even permutations and identify the permutation (1, 4, 5, 6) (2, 1, 5).
- 9. Does there exists a subgroup of order 20 of a group of order 30 ? Justify.
- 10. Let ϕ : G \rightarrow G' be a group homomorphism and let $a \in$ G. Show that $\phi(a^{-1}) = \phi(a)^{-1}$.

K22U 1962

- 11. Write all the left cosets of $6\mathbb{Z}$ in \mathbb{Z} .
- 12. Let R be a ring with additive identity 0. Show that a(-b) = (-a)b = -(ab), for any a, $b \in R$.
- 13. Find the solutions of the equation $x^2 5x + 6 = 0$ in \mathbb{Z}_{12} .
- 14. Compute the remainder of 8^{103} when divided by 13.

Answer any four questions, each question carries 4 marks.

- 15. Find the cyclic subgroup of \mathbb{Z}_{42} generated by 30.
- 16. In the permutation group S_n , show that the number of even and odd permutations are same.
- 17. Show that the order of an element of a finite group divides the order of the group.
- 18. Show that a subgroup H of G is a normal subgroup if and only if $gHg^{-1} = H$, for all $g \in G$.
- 19. In the ring \mathbb{Z}_n , show that the divisors of 0 are precisely those non zero elements that are not relatively prime to n.
- 20. Find all the solutions of the congruence $15x \equiv 27 \pmod{18}$.

SECTION - D

Answer any two questions, each question carries 6 marks.

- 21. Let G be a cyclic group with generator a. Prove that :
 - a) If the order of G is infinite, then G is isomorphic to $(\mathbb{Z}, +)$
 - b) If G has finite order n, then G is isomorphic to $(\mathbb{Z}_n, + _n)$.
- 22. State and prove the Cayley's theorem.
- 23. Let ϕ be a homomorphism of a group G into a group G'. Show that :
 - a) If H is a subgroup of G, then ϕ [H] is a subgroup of G'.
 - b) If K' is a subgroup of G', then ϕ^{-1} [K'] is a subgroup of G.
- 24. Prove that the set G_n of non zero elements of \mathbb{Z}_n that are not 0 divisors forms a group under multiplication modulo n.

Reg. No.:

Name :

V Semester B.Sc. Degree (CBCSS – OBE – Regular/Supplementary/ Improvement) Examination, November 2022 (2019 Admission Onwards) CORE COURSE IN MATHEMATICS 5B07MAT : Abstract Algebra

Time : 3 Hours

Max. Marks: 48

$\mathsf{PART} - \mathsf{A}$

Answer **any 4** questions. They carry **1** mark **each**.

- 1. Find the order of the cyclic subgroup of \mathbb{Z}_4 generated by 3.
- 2. What is the order of the cycle (1, 4, 5, 7) in S₈?
- 3. Let $\phi: G \to G'$ be a group homomorphism of G onto G'. If G is abelian, prove that G' is abelian.
- 4. Let p be a prime. Show that $(a + b)^p = a^p + b^p$ for all $a, b \in \mathbb{Z}_p$.
- 5. Solve the equation 3x = 2 in the field \mathbb{Z}_7 .

PART – B

Answer **any 8** questions from among the questions **6** to **16**. These questions carry **2** marks **each**.

- 6. Prove that in a group G, the identity element and inverse of each element are unique.
- 7. Let H and K be subgroups of a group G. Prove that $H \cap K$ is a subgroup of G.
- 8. State and prove division algorithm for \mathbb{Z} .
- 9. Let G be a group and suppose $a \in G$ generates a cyclic subgroup of order 2 and is the unique such element. Show that ax = xa for all $x \in G$.

P.T.O.

K22U 2322

K22U 2322

- 10. Let $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 4 & 5 & 6 & 2 \end{pmatrix}$ and $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 1 & 3 & 6 & 5 \end{pmatrix}$ be permutations in S₆. Find $\tau\sigma$ and $|\langle \sigma \rangle|$.
- 11. Express the permutation $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 6 & 4 & 1 & 8 & 2 & 5 & 7 \end{pmatrix}$ in S₈ as a product of disjoint cycles and then as a product of transpositions.
- 12. Find all orbits of the permutation $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 1 & 3 & 6 & 2 & 4 \end{pmatrix}$.
- 13. Find the index of $\langle 3 \rangle$ in the group of \mathbb{Z}_{24} .
- 14. Prove that every group of prime order is cyclic.
- 15. Prove that a group homomorphism $\phi : G \to G'$ is a one to one map if and only if ker $(\phi) = \{e\}$.
- 16. Let R be a ring with additive identity 0. Then for any a, $b \in R$ prove that
 - a) a0 = 0a = 0
 - b) a(-b) = (-a)b = -(ab).

PART - C

Answer **any 4** questions from among the questions **17** to **23**. These questions carry **4** marks **each**.

- 17. Let G be a group and let g be one fixed element of G. Show that the map I_g , such that $i_a(x) = gxg'$ for $x \in G$ is an isomorphism of G with itself.
- 18. Draw subgroup diagram for Klein 4-group V.
- 19. Let G be a finite cyclic group of order n with generator a. Prove that G is isomorphic to $(\mathbb{Z}_n, +_n)$.
- 20. Let $n \ge 2$. Prove that the collection of all even permutations of $\{1, 2, 3, ..., n\}$ forms a subgroup of order $\frac{n!}{2}$ of the symmetric group S_n .
- 21. Let H be a subgroup of G such that g^{-1} hg \in H for all g \in G and all h \in H. Show that every left coset gH is the same as the right coset Hg.

-3-

- 22. Let H be a subgroup of G. Prove that left coset multiplication is well defined by the equation (aH) (bH) = (ab)H if and only if H is a normal subgroup of G.
- 23. Let ϕ : $\mathbb{Z} \to S_8$ be homomorphism such that $\phi(1) = (1, 4, 2, 6)$ (2, 5, 7). Find ker (ϕ) and $\phi(20)$.

PART – D

Answer **any 2** questions from among the questions **24** to **27**. These questions carry **6** marks **each**.

- 24. a) Let G be a cyclic group with n elements and generated by a. Let $b \in G$ and $b = a^s.$ Prove that
 - i) b generates a cyclic subgroup of H of G containing n/d elements, where d is the gcd of n and s.
 - ii) $\langle a^s \rangle = \langle a^t \rangle$ if and only if gcd (s, n) = gcd (t, n).
 - b) Let p and q be prime numbers. Find the number of generators of the cyclic group $\mathbb{Z}_{pq}.$
- 25. a) Prove that every coset (left or right) of a subgroup H of a group G has the same number of elements as H.
 - b) State and prove Lagrange's theorem.
- 26. Let $\phi : G \to G'$ be a group homomorphism and let $H = \ker(\phi)$. Let $a \in G$. Prove that the set $\phi^{-1}[\{\phi(a)\}] = \{x \in G : \phi(x) = \phi(a)\}$ is the left coset aH of H and is also the right coset Ha of H.
- 27. a) Prove that every field F is an integral domain.
 - b) Prove that every finite integral domain is a field.
 - c) Give an example of an integral domain which is not a field.

K21U 1533

Reg. No. :

Name :

V Semester B.Sc. Degree (CBCSS – Sup./Imp.) Examination, November 2021 (2015 – '18 Admns) Core Course in Mathematics 5B06MAT : ABSTRACT ALGEBRA

Time : 3 Hours

Max. Marks : 48

SECTION - A

Answer **all** the questions. **Each** question carries **1** mark.

- 1. True or false : A binary operation * on a set S is commutative if there exists a, $b \in S$ such that a *b = b * a.
- 2. Cycle of length two is called _____
- 3. Write a non-trivial improper normal subgroup of S_3 .
- 4. Which element is the multiplicative inverse of 4 in the field \mathbb{Z}_5 ?

SECTION - B

Answer any eight questions. Each question carries 2 marks.

- 5. Let * be a binary operation on \mathbb{Q}^+ defined by $a * b = \frac{ab}{2}$. Find the identity of *.
- 6. Let (G, *) be a group and if a, $b \in G$. Show that the linear equation a * x = b has a unique solution in G.
- 7. Define Octic group and write the elements.
- 8. Express the permutation $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 6 & 4 & 1 & 8 & 2 & 5 & 7 \end{pmatrix}$ into product of disjoint cycles.
- 9. Compute $(\langle 4 \rangle : \mathbb{Z}_{12})$.

K21U 1533

- 10. Let $\phi: G \to G'$ be a group homomorphism and e be the identity element in G. Show that $\phi(e)$ is the identity element of G'.
- 11. Define inner automorphism of a group.
- 12. Is \mathbb{Z} a field ? Justify your claim.
- 13. Find all solutions of $x^2 + x = 2$ in the ring \mathbb{Z}_4 .
- 14. Let R be a ring with unity and $n.1 \neq 0$ for all $n \in \mathbb{Z}^+$. Show that R has characteristic 0.

SECTION - C

Answer any four questions. Each question carries 4 marks.

- 15. Prove that every cyclic group is abelian. What about the converse.
- 16. Write the composition table for the group S_3 .
- 17. Prove that every group of prime order is cyclic.
- 18. Let ϕ : G \rightarrow G' be a group homomorphism and let H = Ker(ϕ). Let a \in G. Show that the set $\phi^{-1}[\{\phi(a)\}] = \{x \in G \mid \phi(x) = \phi(a)\}$ is the left coset aH of H.
- 19. Show that the cancellation laws hold in a ring R if and only if R has no divisors of 0.
- 20. Show that for every integer n, the number $n^{33} n$ is divisible by 15.

SECTION - D

Answer any two questions. Each question carries 6 marks.

- 21. Find all subgroups of \mathbb{Z}_{18} and draw the subgroup diagram.
- 22. Let G and G' be groups and let φ : G → G' be a one-to-one function such that φ(xy) = φ(x)φ(y) for all x, y ∈ G. Show that φ[G] is a subgroup of G' and φ : G → φ[G] is an isomorphism.
- 23. Let H be a normal subgroup of a group G. Prove that the cosets of H form a group G|H under the operation (aH)(bH) = (ab)H.
- 24. State and prove the Euler's theorem and find the remainder of 7¹⁰⁰⁰ when divided by 24.

Reg. No. :

Name :

V Semester B.Sc. Degree CBCSS (OBE) Regular Examination, November 2021 (2019 Admn. Only) CORE COURSE IN MATHEMATICS 5B07 MAT : Abstract Algebra

Time : 3 Hours

PART – A (Short Answer)

Answer any 4 questions. Each question carries 1 mark.

- 1. Define abelian group with an example.
- 2. Is \mathbb{Z}^* under division a binary operation. Justify.
- 3. Every infinite order cyclic group is isomorphic to
- 4. What is the order of alternating group A_n ?
- 5. State Lagrange's theorem.

PART – B

(Short Essay)

Answer any eight questions. Each question carries 2 marks.

- 6. In a group G with binary operation *, prove that there is only one element e in G such that e * x = x * e = x, $\forall x \in G$.
- 7. Prove that $(\mathbb{Q}^+, *)$, where * is defined by $a * b = \frac{ab}{2}$; $a, b \in \mathbb{Q}^+$ is a group.
- 8. For sets H and K, Let $H \cap K = \{x/x \in H \text{ and } x \in K\}$, show that if H and K are subgroups of a group G, then $H \cap K$ is also a subgroup of G.

K21U 4552

Max. Marks: 48

P.T.O.

 $(4 \times 1 = 4)$

K21U 4552

- 9. Prove that the order of an element of a finite group divides the order of group.
- 10. Explain the elements of group S_3 .
- 11. Find the order of (14)(3578) in S₈.
- 12. Prove that every permutation σ of a finite set is a product of disjoint cycles.
- 13. Determine the permutation (18)(364)(57) in S₈ is odd or even.
- 14. State fundamental homomorphism theorem.
- 15. Find the order of $\mathbb{Z}_6/<3>$.
- 16. Let ϕ : $G \rightarrow G'$ be a group homomorphism. Prove that Ker ϕ is a subgroup of G.

(8×2=16)

PART – C (Essay)

Answer any four questions. Each question carries 4 marks.

- 17. Prove that subgroup of a cyclic group is cyclic.
- 18. Let G be a group and $a \in G$. Prove that $H = \{a^n/n \in \mathbb{Z}\}$ is the smallest subgroup of G that contains a.
- 19. Determine whether the set of all $n \times n$ matrices with determinant -1 is a subgroup of G.
- 20. Let A be a non-empty set. Prove that S_A , the collection of all permutations of A is group under permutation multiplication.
- 21. Define rings. Prove that $(\mathbb{Z}_n, +_n, \times_n)$ is a ring.
- 22. Prove that every group is isomorphic to a group of permutations.
- 23. Prove that $\gamma : \mathbb{Z} \to \mathbb{Z}_n$; where $\gamma(m) = r$; where r is the remainder when m is divided by n is a homomorphism. (4×4=16)

PART – D (Long Essay)

-3-

Answer any two questions. Each question carries 6 marks.

- 24. Prove that every integral domain is a field.
- 25. Let H be a subgroup of G, then prove that the left coset multiplication is well defined by the equation (aH)(bH) = (abH) if and only if H is a normal subgroup of G.
- 26. a) Find all cosets of the subgroup < 2 > of \mathbb{Z}_{12} .
 - b) Prove that every group of prime order is cyclic.
- 27. Let G be a cyclic group with n elements generated by a. Let $b \in G$ and $b = a^s$, then prove that b generates a cyclic subgroup H of G containing $\frac{n}{d}$ elements, where d is the gcd of n and s. (2×6=12)

Reg. No.:

Name :

V Semester B.Sc. Degree (CBCSS – OBE – Regular/Supplementary/ Improvement) Examination, November 2022 (2019 Admission Onwards) CORE COURSE IN MATHEMATICS 5B05MAT : Set Theory, Theory of Equations and Complex Numbers

Time : 3 Hours

PART– A

Max. Marks: 48

Answer any four questions from this Part. Each question carries one mark.

- 1. Give an example of a countable set.
- 2. Explain Descartes rule of signs.
- If f(x) = 0 is an equation of odd degree, then it has at least one ______ root.
- 4. Say true or false. "Zero is a complex number".
- 5. Find the conjugate of 6 5i.

PART-B

Answer any eight questions from this Part. Each question carries two marks.

- 6. Define a denumerable set, give an example.
- 7. If α , β , γ are the roots of $2x^3 + x^2 2x 1 = 0$, find
 - i) $\alpha + \beta + \gamma$
 - ii) αβγ
 - iii) $\alpha\beta + \beta\gamma + \alpha\gamma$.

K22U 2320

K22U 2320

- 8. Search for rational roots of $f(x) = 2x^3 5x^2 + 5x 3 = 0$.
- 9. Show that $x^5 2x^2 + 7 = 0$ has at least two imaginary roots.
- 10. Transform the equation $x^3 6x^2 + 5x + 12 = 0$, into an equation lacking second term.
- 11. Show that if x = 1 + 2i, then $x^2 2x + 5 = 0$.
- 12. Find the modulus and amplitude of $\sqrt{3}$ i.
- 13. Express $\frac{1+i}{2+3i}$ in the form of X + iY.
- 14. A) The solution of a reciprocal equation of first type depends on that of an reciprocal equation of first type and of ______ degree.
 - B) The solution of a reciprocal equation of first type and of degree 2 m depends on that of an equation of degree _____.
- 15. Find the roots of $2x^3 + 3x^2 1 = 0$.
- 16. A) Write the standard form of a cubic equation.
 - B) What is reciprocal equation ?

PART-C

Answer any four questions from this Part. Each question carries four marks.

- 17. Show that the set $E_n = \{2n : n \in \mathbb{N}\}$ of even natural numbers is countably infinite.
- 18. If α , β , γ are the roots of $x^3 + P_1x^2 + P_2x + P_3 = 0$ then find the equation whose roots are α^3 , β^3 , γ^3 .
- 19. Find an upper bound and lower bound for the limit to the roots of $f(x) = 3x^4 61x^3 + 127x^2 + 220x 520 = 0.$
- 20. Solve the reciprocal equation, $x^4 8x^3 + 17x^2 8x + 1 = 0$.

21. Find the points of Q₁, Q₂, Q₃ representing the values of $\sqrt[3]{z}$ where $z = \sqrt{5} + i\sqrt{3}$.

- 22. A) Define nth root of unity.
 - B) Define Principal nth root of unity.
- 23. Explain the behaviour of roots of the equation $ax^3 + 3bx^2 + 3cx + d = 0$, with respect to discriminant.

PART-D

Answer any two questions from this Part. Each question carries six marks.

- 24. State and prove Cantor's theorem.
- 25. i) Find the condition that the sum of two roots of α , β of

 $x^4 + p_1 x^3 + p_2 x^2 + p_3 x + P_4 = 0$, may be zero.

- ii) Use the result to find the roots of the equation, whose roots are the six values of $\frac{1}{2}(\alpha + \beta)$, where α , β are any roots of $ax^4 + 4bx^3 + 6cx^2 + 4dx + e = 0$.
- 26. If α , β , γ are the roots of $ax^3 + 3bx^2 + 3cx + d = 0$, then find the equation whose roots are squares of the difference of the roots.
- 27. Define multiplication and division of two complex numbers.

Reg. No. :

Name :

V Semester B.Sc. Degree CBCSS (OBE) Regular Examination, November 2021 (2019 Admn. Only) CORE COURSE IN MATHEMATICS 5B05 MAT : Set Theory, Theory of Equations and Complex Numbers

Time : 3 Hours

Max. Marks : 48

PART – A

Answer **any four** questions from this Part. **Each** question carries **1** mark.

- 1. State the Uniqueness theorem.
- 2. Sum of the roots of the equation $x^3 x 1 = 0$ is _____.
- 3. If 1 + i is a root of a quadratic equation, then the other root will be _____.
- 4. What is a reciprocal equation ?
- 5. If the discriminant Δ of a cubic equation is negative, then it has _____.

PART – B

Answer any eight questions from this Part. Each question carries 2 marks.

- 6. If S is a finite set and $T\subseteq S$, then prove that T is finite.
- 7. Transform $x^3 6x^2 + 5x + 12 = 0$ into an equation which lacks the second term.
- 8. If α , β , γ are the roots of the equation $2x^3 + 3x^2 x 1 = 0$, then find the equation whose roots are $\alpha 1$, $\beta 1$, $\gamma 1$.
- 9. State De Gua's rule.
- 10. Find an upper limit of the positive roots of the equation $x^3 10x^2 11x 100 = 0$.
- 11. Write necessary and sufficient condition that the equation $ax^3 + 3bx^2 + 3cx + d = 0$ has two equal roots.
- 12. Discuss the character of the roots of the equation $x^3 + 29x 97 = 0$ without finding them.
- 13. Explain the first and second kind reciprocal equations.
- 14. Express the complex number $2 + 2\sqrt{3}i$ in polar form.
- 15. Find Arg(-1 i).
- 16. State general form of De Movire's theorem.

P.T.O.

K21U 4550

K21U 4550

PART – C

Answer any four questions from this Part. Each question carries 4 marks.

- 17. State and prove Cantor's theorem.
- 18. Use Descartes rule of signs to show that $x^7 3x^4 + 2x^3 1 = 0$ has at least four imaginary roots.
- 19. If a + b + c = 0, then show that $a^5 + b^5 + c^5 = 5abc$ (ab + bc + ca).
- 20. Solve $6x^5 + 11x^4 33x^3 33x^2 + 11x + 6 = 0$.
- 21. Solve $y^3 7y^2 + 36 = 0$, where the difference between two of the roots is five.
- 22. For any two complex numbers a and b, prove that

$$|a + \sqrt{a^2 - b^2}| + |a - \sqrt{a^2 - b^2}| = |a + b| + |a - b|$$

23. If z = 1 + i, then find $(1 + i)^{101}$.

PART – D

Answer any two questions from this Part. Each question carries 6 marks.

- 24. Prove that the set of all rational numbers is denumerable.
- 25. Find the rational roots of the equation $x^3 5x^2 18x + 72 = 0$.
- 26. Explain the Cardan's solution for general cubic equation.
- 27. Find all the fourth roots of unity and locate them graphically.
